【題目】已知橢圓右頂點(diǎn)與右焦點(diǎn)的距離為,短軸長為
(I)求橢圓的方程;
(Ⅱ)過左焦點(diǎn)F的直線與橢圓分別交于A、B兩點(diǎn),若三角形OAB的面積為求直線AB的方程。
【答案】(1)由;(2)或
【解析】(1)由;(2)利用直線與橢圓的位置關(guān)系,研究三角形的面積,利用韋達(dá)定理求解直線的方程。
解:(Ⅰ)由題意, -------1分
解得. ------------2分
即:橢圓方程為------------4分
(Ⅱ)當(dāng)直線與軸垂直時(shí), ,
此時(shí)不符合題意故舍掉;
當(dāng)直線與軸不垂直時(shí),設(shè)直線的方程為:,
代入消去得: . ------------5分
設(shè),則,
所以. ------------7分
原點(diǎn)到直線的距離,
所以三角形的面積.
由, ------------11分
所以直線或. ---------12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形AMDE的邊長為2,B,C分別為AM,MD的中點(diǎn).在五棱錐P-ABCDE中,F為棱PE的中點(diǎn),平面ABF與棱PD,PC分別交于點(diǎn)G,H.
(1)求證:AB∥FG;
(2)若PA⊥底面ABCDE,且PA=AE.求直線BC與平面ABF所成角的大小,并求線段PH的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)
經(jīng)常使用 | 偶爾或不用 | 合計(jì) | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計(jì) | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?
(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.
(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);
(ii)從這5人中,再隨機(jī)選出2人贈(zèng)送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.
參考公式: ,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象與軸相切,且切點(diǎn)在軸的正半軸上.
(1)若函數(shù)在上的極小值不大于,求的取值范圍.
(2)設(shè),證明: 在上的最小值為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,其導(dǎo)函數(shù)為.
(1)設(shè),若函數(shù)在上有且只有一個(gè)零點(diǎn),求的取值范圍;
(2)設(shè),且,點(diǎn)是曲線上的一個(gè)定點(diǎn),是否存在實(shí)數(shù),使得成立?證明你的結(jié)論
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x(1-)是R上的偶函數(shù).
(1)對(duì)任意的x∈[1,2],不等式m·≥2x+1恒成立,求實(shí)數(shù)m的取值范圍.
(2)令g(x)=1-,設(shè)函數(shù)F(x)=g(4x-n)-g(2x+1-3)有零點(diǎn),求實(shí)數(shù)n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=在點(diǎn)(1,1)處的切線方程為x+y=2.
(1)求a,b的值;
(2)對(duì)函數(shù)f(x)定義域內(nèi)的任一個(gè)實(shí)數(shù)x,不等式f(x)-<0恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體ABCD-A′B′C′D′的棱長為1,E,F分別是棱AA′,CC′的中點(diǎn),過直線EF的平面分別與棱BB′、DD′分別交于M,N兩點(diǎn),設(shè)BM=x,x∈[0,1],給出以下四個(gè)結(jié)論:
①平面MENF⊥平面BDD′B′;
②直線AC∥平面MENF始終成立;
③四邊形MENF周長L=f(x),x∈[0,1]是單調(diào)函數(shù);
④四棱錐C′-MENF的體積V=h(x)為常數(shù);
以上結(jié)論正確的是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A過定點(diǎn)A(4,0), 且在y軸上截得的弦MN的長為8.
(Ⅰ) 求動(dòng)圓圓心的軌跡C的方程;
(Ⅱ) 已知點(diǎn)B(-1,0), 設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點(diǎn)P, Q, 若x軸是的角平分線, 證明直線l過定點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com