分析:(1)把b=2a代入到f(x)中,求出f'(x)=0時(shí)x的值,利用a的范圍討論函數(shù)的增減性得到函數(shù)的極值;
(2)因?yàn)楹瘮?shù)f(x)在區(qū)間(0,2]上單調(diào)遞增,所以f'(x)=x
2-(a+2)x+b≥0對(duì)x∈(0,2]恒成立,即
a≤x+-2恒成立,設(shè)g(x)=
x+-2,求出導(dǎo)函數(shù)利用b的取值范圍討論函數(shù)的增減性得到g(x)的最小值,a小于等于最小值,列出不等式求出a的取值范圍.
解答:解:(1)當(dāng)b=2a時(shí),
f(x)=x3-(a+2)x2+2ax+1,
所以f'(x)=x
2-(a+2)x+2a=(x-2)(x-a).令f'(x)=0,得x=2,或x=a.
①若a<2,則當(dāng)x∈(-∞,a)時(shí),f'(x)>0;當(dāng)x∈(a,2)時(shí),f'(x)<0;當(dāng)x∈(2,+∞)時(shí),f'(x)>0.
所以f(x)在(-∞,a)上單調(diào)遞增,在(a,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增.此時(shí)當(dāng)x=a時(shí),f(x)有極大值
f(a)=-a3+a2+1;當(dāng)x=2時(shí),f(x)有極小值
f(2)=2a-.
②若a=2,則f'(x)=(x-2)
2≥0,所以f(x)在(-∞,+∞)上單調(diào)遞增,此時(shí)f(x)無極值.
③若a>2,則當(dāng)x∈(-∞,2)時(shí),f'(x)>0;當(dāng)x∈(2,a)時(shí),f'(x)<0;當(dāng)x∈(a,+∞)時(shí),f'(x)>0.
所以f(x)在(-∞,2)上單調(diào)遞增,在(2,a)上單調(diào)遞減,在(a,+∞)上單調(diào)遞增.此時(shí)當(dāng)x=2時(shí),f(x)有極大值
f(2)=2a-;當(dāng)x=a時(shí),f(x)有極小值
f(a)=-a3+a2+1.
(2)解:因?yàn)楹瘮?shù)f(x)在區(qū)間(0,2]上單調(diào)遞增,所以f'(x)=x
2-(a+2)x+b≥0對(duì)x∈(0,2]恒成立,
即
a≤x+-2對(duì)x∈(0,2]恒成立,所以
a≤(x+-2)min,x∈(0,2].
設(shè)
g(x)=x+-2,x∈(0,2],則
g′(x)=1-=(b>0),
①若
0<<2,即0<b<4,則當(dāng)
x∈(0,)時(shí),g'(x)<0;當(dāng)
x∈(,2]時(shí),f'(x)>0.
所以g(x)在
(0,)上單調(diào)遞減,在
(,2]上單調(diào)遞增.
所以當(dāng)
x=時(shí),g(x)有最小值
g()=2-2,所以當(dāng)0<b<4時(shí),
a≤2-2.
②若
≥2,即b≥4,則當(dāng)x∈(0,2]時(shí),g'(x)≤0,所以g(x)在(0,2]上單調(diào)遞減,
所以當(dāng)x=2時(shí),g(x)有最小值
g(2)=,所以當(dāng)b≥4時(shí),
a≤.
綜上所述,當(dāng)0<b<4時(shí),
a≤2-2;當(dāng)b≥4時(shí),
a≤.