考慮坐標(biāo)平面上以O(shè)(0,0),A(3,0),B(0,4)為頂點(diǎn)的三角形,令C1,C2分別為△OAB的外接圓、內(nèi)切圓.請(qǐng)問(wèn)下列哪些選項(xiàng)是正確的?
(1)C1的半徑為2
(2)C1的圓心在直線y=x上
(3)C1的圓心在直線4x+3y=12上
(4)C2的圓心在直線y=x上
(5)C2的圓心在直線4x+3y=6上.

精英家教網(wǎng)
O,A,B三點(diǎn)的位置如右圖所示,C1,C2為△OAB的外接圓與內(nèi)切圓,
∵△OAB為直角三角形,
∴C1為以線段AB為直徑的圓,故半徑為
1
2
|AB|=
5
2
,
所以(1)選項(xiàng)錯(cuò)誤;
又C1的圓心為線段AB的中點(diǎn)(
3
2
,2)
,此點(diǎn)在直線4x+3y=12上,
所以選項(xiàng)(2)錯(cuò)誤,選項(xiàng)(3)正確;
如圖,P為△OAB的內(nèi)切圓C2的圓心,
故P到△OAB的三邊距離相等均為圓C2的半徑r.
連接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB
?
1
2
×3×4=
1
2
×3×r+
1
2
×5×r+
1
2
×4×r?r=1

故P的坐標(biāo)為(1,1),此點(diǎn)在y=x上.
所以選項(xiàng)(4)正確,選項(xiàng)(5)錯(cuò)誤,
綜上,正確的選項(xiàng)有(3)、(4).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

考慮坐標(biāo)平面上以O(shè)(0,0),A(3,0),B(0,4)為頂點(diǎn)的三角形,令C1,C2分別為△OAB的外接圓、內(nèi)切圓.請(qǐng)問(wèn)下列哪些選項(xiàng)是正確的?
(1)C1的半徑為2
(2)C1的圓心在直線y=x上
(3)C1的圓心在直線4x+3y=12上
(4)C2的圓心在直線y=x上
(5)C2的圓心在直線4x+3y=6上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

考慮坐標(biāo)平面上以O(shè)(0,0),A(3,0),B(0,4)為頂點(diǎn)的三角形,令C1,C2分別為△OAB的外接圓、內(nèi)切圓.請(qǐng)問(wèn)下列哪些選項(xiàng)是正確的?
(1)C1的半徑為2
(2)C1的圓心在直線y=x上
(3)C1的圓心在直線4x+3y=12上
(4)C2的圓心在直線y=x上
(5)C2的圓心在直線4x+3y=6上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年臺(tái)灣省大學(xué)入學(xué)學(xué)科能力測(cè)驗(yàn)考試數(shù)學(xué)試卷(解析版) 題型:解答題

考慮坐標(biāo)平面上以O(shè)(0,0),A(3,0),B(0,4)為頂點(diǎn)的三角形,令C1,C2分別為△OAB的外接圓、內(nèi)切圓.請(qǐng)問(wèn)下列哪些選項(xiàng)是正確的?
(1)C1的半徑為2
(2)C1的圓心在直線y=x上
(3)C1的圓心在直線4x+3y=12上
(4)C2的圓心在直線y=x上
(5)C2的圓心在直線4x+3y=6上.

查看答案和解析>>

同步練習(xí)冊(cè)答案