(本小題12分)
四面體
中,
,
分別是
的中點,且
為正三角形,
平面
.
①求
與平面
所成角的大。
②求二面角
的平面角的余弦值.
①
②
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)如圖,在六面體
ABCD-
A1B1C1D1中,四邊形
ABCD是邊長為2的正方形,四邊形
A1B1C1D1是邊長為1的正方形,
DD1⊥平面
A1B1C1D1,
DD1⊥平面
ABCD,
DD1=2.
(Ⅰ)求證:A
1C
1與AC共面,B
1D
1與BD共面;
(Ⅱ)求證:平面A
1ACC
1⊥平面B
1BDD
1;
(Ⅲ)求二面角A-BB1-C的大。ㄓ梅慈呛瘮(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題12分)
如圖,已知
為平行四邊形,
,
,
,點
在
上,
,
,
與
相交于
.現(xiàn)將四邊形
沿
折起,使點
在平面
上的射影恰在直線
上.
(Ⅰ)求證:
平面
;
(Ⅱ)求折后直線DN與直線BF所成角的余弦值;
(Ⅲ)求三棱錐N—ABF的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分10分)
四棱錐P-ABCD中,底面ABCD是正方形,
邊長為
,PD=
,PD⊥平面ABCD
(1)求證: AC⊥PB ;
(2)求二面角A-PB-D的大。
(3)求四棱錐外接球的半徑.
(4)在這個四棱錐中放入一個球,求球的最大半徑;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在半徑為13的球面上有A,B,C三點,AB=6,BC=8,CA=10,求過A,B,C三點的截面與球心的距離。(10分)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖是正方體的平面展開圖,則該正方體中BM與CN所成的角是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
四棱臺
的12條棱中,與棱
異面的棱共有
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
是不同的直線,
是不重合的平面,給出下列命題:
①若
②若
③若
④
是兩條異面直線,若
上述命題中,真命題的序號是______________(寫出所有真命題的序號).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
不垂直的兩條異面直線m、n在同一個平面
上的射影不可能是
兩條平行直線
兩條相互垂直的直線
一條直線及其外一點
同一條直線
查看答案和解析>>