【題目】已知函數(shù)滿(mǎn)足如下條件:
①函數(shù)的最小值為,最大值為9;
②且;
③若函數(shù)在區(qū)間上是單調(diào)函數(shù),則的最大值為2.
試探究并解決如下問(wèn)題:
(Ⅰ)求,并求的值;
(Ⅱ)求函數(shù)的圖象的對(duì)稱(chēng)軸方程;
(Ⅲ)設(shè)是函數(shù)的零點(diǎn),求的值的集合.
【答案】(Ⅰ);;(Ⅱ);(Ⅲ).
【解析】
(Ⅰ)由函數(shù)的最值結(jié)合三角函數(shù)的最值可求得,;由函數(shù)在區(qū)間上是單調(diào)函數(shù),則的最大值為2,可得,根據(jù)即可得;由且,可得,驗(yàn)證即可得;再由函數(shù)周期性即可得;
(Ⅱ)由題意結(jié)合三角函數(shù)的性質(zhì)可令,化簡(jiǎn)即可得解;
(Ⅲ)由題意可得,進(jìn)而可得,
或,或,化簡(jiǎn)后代入,分別求解即可.
(Ⅰ)因?yàn)?/span>,,
所以,,
所以,.
所以.
設(shè)的最小正周期為,
因?yàn)?/span>在區(qū)間上是單調(diào)函數(shù),則的最大值為2,
所以,所以,所以即,
所以.
因?yàn)?/span>,所以,
所以,即.
因?yàn)?/span>,所以或.
若,則,此時(shí),不合題意;
若,則,此時(shí),符合題意;
所以.
所以.
因?yàn)?/span>的最小正周期為4,
所以.
(Ⅱ)由(Ⅰ)知.
令,得.
所以函數(shù)的對(duì)稱(chēng)軸方程是.
(Ⅲ)令,則,所以函數(shù)的零點(diǎn)都滿(mǎn)足:
或.
因?yàn)?/span>,是函數(shù)的零點(diǎn),所以,
或,或,
即,或,
或.
所以,
或,
或.
故的值的集合為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢(xún)問(wèn)110名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
男 | 女 | 總計(jì) | |
愛(ài)好 | 40 | 20 | 60 |
不愛(ài)好 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
由算得,
0.050 | 0.010 | 0.001 | |
| 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是 ( 。
A. 在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B. 在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C. 有99.9%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 有99.9%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某個(gè)調(diào)查小組在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了150人,其中男性45人,女性55人。女性中有35人主要的休閑方式是室內(nèi)活動(dòng),另外20人主要的休閑方式是室外運(yùn)動(dòng);男性中15人主要的休閑方式是室內(nèi)活動(dòng),另外30人主要的休閑方式是室外運(yùn)動(dòng)。
參考數(shù)據(jù):
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)的列聯(lián)表;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為休閑方式與性別有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)若在區(qū)間上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,橢圓關(guān)于坐標(biāo)軸對(duì)稱(chēng),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系, , 為橢圓上兩點(diǎn).
(1)求直線(xiàn)的直角坐標(biāo)方程與橢圓的參數(shù)方程;
(2)若點(diǎn)在橢圓上,且點(diǎn)在第一象限內(nèi),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)中心在原點(diǎn),焦點(diǎn)在軸上的橢圓過(guò)點(diǎn),且離心率為.為的右焦點(diǎn),為上一點(diǎn),軸,的半徑為.
(1)求和的方程;
(2)若直線(xiàn)與交于兩點(diǎn),與交于兩點(diǎn),其中在第一象限,是否存在使?若存在,求的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某中學(xué)舉行的物理知識(shí)競(jìng)賽中,將三個(gè)年級(jí)參賽學(xué)生的成績(jī)?cè)谶M(jìn)行整理后分成5組,繪制出如圖所示的須率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數(shù)是15.
(1)求成績(jī)?cè)?/span>50-70分的頻率是多少
(2)求這三個(gè)年級(jí)參賽學(xué)生的總?cè)藬?shù)是多少:
(3)求成績(jī)?cè)?/span>80-100分的學(xué)生人數(shù)是多少
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線(xiàn)段AB的端點(diǎn)B的坐標(biāo)為(3,0),端點(diǎn)A在圓上運(yùn)動(dòng);
(1)求線(xiàn)段AB中點(diǎn)M的軌跡方程;
(2)過(guò)點(diǎn)C(1,1)的直線(xiàn)m與M的軌跡交于G、H兩點(diǎn),求以弦GH為直徑的圓的面積最小值及此時(shí)直線(xiàn)m的方程.
(3)若點(diǎn)C(1,1),且P在M軌跡上運(yùn)動(dòng),求的取值范圍.(O為坐標(biāo)原點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐中,,且、、兩兩垂直,是三棱錐外接球面上一動(dòng)點(diǎn),則到平面的距離的最大值是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com