設A={x|2x-x<1},B={x|x2≤4},則A∩B等于( 。
分析:求出A與B中不等式的解集確定出A與B,求出A與B的交集即可.
解答:解:由集合A中的不等式2x-x<1,解得:x<1,即A={x|x<1};
由集合B中的不等式x2≤4,解得:-2≤x≤2,即B={x|-2≤x≤2},
則A∩B={x|-2≤x<1}.
故選:C.
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于定義在D上的函數(shù)y=f(x),若同時滿足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
②對于D內(nèi)任意x2,當x2∉[a,b]時總有f(x2)>c稱f(x)為“平底型”函數(shù).
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡要說明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡要說明理由;
(2)(理)設f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對一切t∈R恒成立,求實數(shù)x的范圍;
(文)設f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對一切t∈R恒成立,求實數(shù)x的范圍;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•無為縣模擬)設集合A={x|
2
x-2
 
<1},B={x|1-x≥0},則A∩B
等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A={x|x2-2x+a=0},4∈A,
(1)求a的值,并寫出集合A的所有子集;
(2)已知B={x|mx+2=0},若A∪B=A,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•孝感模擬)設全集U=R,A={x|2x(x+3)<1},B={x|y=ln(-1-x)},則圖中陰影部分表示的集合為( 。

查看答案和解析>>

同步練習冊答案