設(shè)數(shù)列{an}的前n項和為Sn,且a1=,Sn=n2an-n(n-1),n∈N*

(Ⅰ)求證:數(shù)列{·Sn}是等差數(shù)列;

(Ⅱ)設(shè)函數(shù)f′n(x)是fn(x)=·xn+1的導函數(shù),且bn=f′n(p),p>0,p≠1,若Tn=,試問的極限是否存在?若存在,求出其極限值;若不存在,說明理由.

解:(Ⅰ)當n≥2時,

 

= 

∴數(shù)列是以1為首項和公差的等差數(shù)列. 

(Ⅱ)由(Ⅰ)知:Sn=1+n-1=nSn=

(x)=·Sn·xn=nxn,bn=(p)=npn

Tn==b1+b2+…+bn=p+2p2+3p3+…+npn,    ①

由于p>0,p≠1,故pTn=p2+2p3+3p4+…+npn+1,  ②

①-②得:(1-p)Tn=p+p2+p3+…+pn-npn+1=-npn+1

Tn=,  

從而,∴當0<p<1時,,

當p>1且n→∞時,不存在.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}的前n項的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列an的前n項的和為Sn,a1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求數(shù)列an的通項公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}的前n項和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域為Dn,若Dn內(nèi)的整點(整點即橫坐標和縱坐標均為整數(shù)的點)個數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項公式;
(3)設(shè)數(shù)列an的前n項和為SnTn=
Sn
5•2n
,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習冊答案