已知雙曲線的一個焦點與拋物線y2=4x的焦點重合,且雙曲線的離心率等于,則該雙曲線的方程為( )
A.
B.
C.
D.
【答案】分析:先根據(jù)拋物線方程求得焦點坐標(biāo),進(jìn)而確定雙曲線的焦點,求得雙曲線中的c,根據(jù)離心率進(jìn)而求得長半軸,最后根據(jù)b2=c2-a2求得b,則雙曲線的方程可得.
解答:解:拋物線y2=4x的焦點F(1,0),

雙曲線的方程為
故選D
點評:本題主要考查了雙曲線的標(biāo)準(zhǔn)方程.考查了對圓錐曲線基礎(chǔ)知識的綜合運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的一個焦點與虛軸的一個端點的連線及實軸所在直線所成的角為30°,則雙曲線的離心率為
6
2
6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的一個焦點與拋物線x=-
1
8
y2
的焦點相同,且雙曲線的離心率是2,那么雙曲線的漸近線方程是
y=±
3
x
y=±
3
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的一個焦點F1(0,5),且過點(0,4),則該雙曲線的標(biāo)準(zhǔn)方程是
y2
16
-
x2
9
=1
y2
16
-
x2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的一個焦點與拋物線x2=20y的焦點重合,且其漸近線的方程為3x±4y=0,則該雙曲線的標(biāo)準(zhǔn)方程為( 。
A、
x2
9
-
y2
16
=1
B、
x2
16
-
y2
9
=1
C、
y2
9
-
x2
16
=1
D、
y2
16
-
x2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年遼寧省、莊河高中高三上學(xué)期期末理科數(shù)學(xué) 題型:選擇題

已知雙曲線的一個焦點與拋物線的焦點重合,且雙曲線的離心率等于,則該雙曲線的方程為                                          

A.     B.    C.    D.

 

查看答案和解析>>

同步練習(xí)冊答案