精英家教網 > 高中數學 > 題目詳情

【題目】(本小題滿分8分) 已知拋物線Cy=-x2+4x-3

1)求拋物線C在點A0,-3)和點B3,0)處的切線的交點坐標;

2)求拋物線C與它在點A和點B處的切線所圍成的圖形的面積.

【答案】1) ();(2

【解析】試題分析:(1)首先求出拋物線的導數,然后分別求當或,當處的導數,再利用導數的幾何意義知道導數即斜率,列出切線方程,最后解方程組,求交點坐標.(2)根據交點坐標知,結合圖像,根據定積分的面積的應用,知被積區(qū)間被分成兩部分,然后列出夾在兩函數之間的面積計算表示.

試題解析:(1, ,

所以過點A0,-3)和點B30)的切線方程分別是

,

兩條切線的交點是(),

2)圍成的區(qū)域如圖所示:區(qū)域被直線分成了兩部分,分別計算再相加,得:

即所求區(qū)域的面積是

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知數列{an}是等差數列,且a1=2,a1+a2+a3=12.
(1)求數列{an}的通項公式;
(2)令bn=an3n(x∈R).求數列{bn}前n項和的公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知過的動圓恒與軸相切,設切點為是該圓的直徑.

(Ⅰ)求點軌跡的方程;

(Ⅱ)當不在y軸上時,設直線與曲線交于另一點,該曲線在處的切線與直線交于點.求證: 恒為直角三角形.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了得到函數y=sin(2x﹣ )的圖象,可以將函數y=cos2x的圖象(
A.向右平移
B.向右平移
C.向左平移
D.向左平移

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為調查某地人群年齡與高血壓的關系,用簡單隨機抽樣方法從該地區(qū)年齡在20~60歲的人群中抽取200人測量血壓,結果如下:

高血壓

非高血壓

總計

年齡20到39歲

12

100

年齡40到60歲

52

100

總計

60

200

(1)計算表中的、值;是否有99%的把握認為高血壓與年齡有關?并說明理由.

(2)現從這60名高血壓患者中按年齡采用分層抽樣的方法抽取5人,再從這5人中隨機抽取2人,求恰好一名患者年齡在20到39歲的概率.

附參考公式及參考數據: =

P(k2≥k0)

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱中,四邊形是菱形,,二面角, .

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(I)討論函數的單調性,并證明當時, ;

(Ⅱ)證明:當時,函數有最小值,設最小值為,求函數的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)= sin2x+2cos2x+m在區(qū)間[0, ]上的最大值為6,求常數m的值及此函數當x∈R時的最小值,并求相應的x的取值集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 )的離心率為, 、分別是它的左、右焦點,且存在直線,使、關于的對稱點恰好是圓 )的一條直徑的兩個端點.

(Ⅰ)求橢圓的方程;

(Ⅱ)設直線與拋物線)相交于、兩點,射線、與橢圓分別相交于點、.試探究:是否存在數集,當且僅當時,總存在,使點在以線段為直徑的圓內?若存在,求出數集;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案