精英家教網 > 高中數學 > 題目詳情

【題目】已知四棱柱中,平面,,,,點中點.

(Ⅰ)求證:平面平面

(Ⅱ)求直線與平面所成角的正弦值.

【答案】(Ⅰ)見解析;(Ⅱ).

【解析】

(Ⅰ)要證平面平面,即在平面找出兩條直線平行于平面,根據題意分析可求得這樣的兩條直線;

(Ⅱ)建立空間直角坐標系,求出直線的方向向量與平面的法向量,運用向量知識求得。

解:(Ⅰ)由題意得,

故四邊形為平行四邊形,

所以

平面,平面

平面,

由題意可知

所以,

因為中點,

所以,

所以

所以四邊形為平行四邊形,

所以,

平面,平面,

所以平面,

又由于相交于點B

平面,

所以平面平面。

(II)由題意,以為坐標原點,

分別以方向為軸,軸,軸正方向建立空間直角坐標系,

,

,,

設平面的一個法向量為

,,

,則,

為直線與平面所成的角,

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如下圖,漢諾塔問題是指有3根桿子A,BCB桿上有若干碟子,把所有碟子從B桿移到A桿上,每次只能移動一個碟子,大的碟子不能疊在小的碟子上面.把B桿上的4個碟子全部移到A桿上,最少需要移動( )次. ( )

A12 B15 C17 D19

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法正確的個數是(

①一組數據的標準差越大,則說明這組數據越集中;

②曲線與曲線的焦距相等;

③在頻率分布直方圖中,估計的中位數左邊和右邊的直方圖的面積相等;

④已知橢圓,過點作直線,當直線斜率為時,M剛好是直線被橢圓截得的弦AB的中點.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 , .

1)若的充分不必要條件,求實數的取值范圍;

(2)若為真命題,“”為假命題,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為坐標原點,橢圓的焦距為,直線截圓與橢圓所得的弦長之比為,圓、橢圓軸正半軸的交點分別為.

(1)求橢圓的標準方程;

(2)設點)為橢圓上一點,點關于軸的對稱點為,直線分別交軸于點,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論的單調性;

(2)若曲線的一條切線方程為,

(i)求的值;

(ii)若時, 恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,,其中,則下列判斷正確的是__________.(寫出所有正確結論的序號)

關于點成中心對稱;

上單調遞增;

③存在,使;

④若有零點,則

的解集可能為.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列圖象中,可能是函數的圖象的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線,.若,與兩坐標軸圍成的四邊形有一個外接圓,則________

查看答案和解析>>

同步練習冊答案