(2012•惠州一模)甲乙兩個學校高三年級分別有1200人,1000人,為了了解兩個學校全體高三年級學生在該地區(qū)六校聯(lián)考的數學成績情況,采用分層抽樣方法從兩個學校一共抽取了110名學生的數學成績,并作出了頻數分布統(tǒng)計表如下:
甲校:
分組 |
[70,80) |
[80,90) |
[90,100) |
[100,110) |
頻數 |
3 |
4 |
8 |
15 |
分組 |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
頻數 |
15 |
x |
3 |
2 |
乙校:
分組 |
[70,80) |
[80,90) |
[90,100) |
[100,110) |
頻數 |
1 |
2 |
8 |
9 |
分組 |
[110,120) |
[120,130) |
[130,140) |
[140,150] |
頻數 |
10 |
10 |
y |
3 |
(Ⅰ)計算x,y的值.
|
甲校 |
乙校 |
總計 |
優(yōu)秀 |
|
|
|
非優(yōu)秀 |
|
|
|
總計 |
|
|
|
(Ⅱ)若規(guī)定考試成績在[120,150]內為優(yōu)秀,請分別估計兩個學校數學成績的優(yōu)秀率.
(Ⅲ)由以上統(tǒng)計數據填寫右面2×2列聯(lián)表,并判斷是否有90%的把握認為兩個學校的數學成績有差異.
參考數據與公式:
由列聯(lián)表中數據計算
K2=n(ad-bc)2 |
(a+b)(c+d)(a+c)(b+d) |
臨界值表
P(K≥k0) |
0.10 |
0.05 |
0.010 |
k0 |
2.706 |
3.841 |
6.635 |