設(shè)橢圓過點,離心率為.
(1)求橢圓的方程;
(2)求過點且斜率為的直線被橢圓所截得線段的中點坐標.
(1);(2).
解析試題分析:(1)由橢圓過已知點和橢圓的離心率可以列出方程組,解方程組即可,也可以分步求解;(2)直線方程和橢圓方程組成方程組,可以求解,也可以利用根與系數(shù)的關(guān)系;然后利用中點坐標公式求解即可.
試題解析:(1)將點代入橢圓C的方程得, 1分
由,得, 3分
橢圓C的方程為 4分
(2)過點且斜率為的直線為 5分
設(shè)直線與橢圓C的交點為,
將直線方程代入橢圓C方程,整理得 7分
由韋達定理得
10分
由中點坐標公式中點橫坐標為,縱坐標為
所以所截線段的中點坐標為 12分.
考點:1.橢圓的標準方程及其幾何性質(zhì);2.直線的方程;3.直線與橢圓的位置關(guān)系問題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
若兩個橢圓的離心率相等,則稱它們?yōu)椤跋嗨茩E圓”.如圖,在直角坐標系xOy中,已知橢圓C1:=1,A1,A2分別為橢圓C1的左、右頂點.橢圓C2以線段A1A2為短軸且與橢圓C1為“相似橢圓”.
(1)求橢圓C2的方程;
(2)設(shè)P為橢圓C2上異于A1,A2的任意一點,過P作PQ⊥x軸,垂足為Q,線段PQ交橢圓C1于點H.求證:H為△PA1A2的垂心.(垂心為三角形三條高的交點)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知曲線的極坐標方程為,直線的參數(shù)方程為為參數(shù),).
(1)化曲線的極坐標方程為直角坐標方程;
(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點、,動點滿足:,且
(1)求動點的軌跡的方程;
(2)已知圓W: 的切線與軌跡相交于P,Q兩點,求證:以PQ為直徑的圓經(jīng)過坐標原點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為橢圓上的三個點,為坐標原點.
(1)若所在的直線方程為,求的長;
(2)設(shè)為線段上一點,且,當中點恰為點時,判斷的面積是否為常數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點的橢圓C:的一個焦點為F1(0,3),M(x,4)(x>0)為橢圓C上一點,△MOF1的面積為.
(1) 求橢圓C的方程;
(2) 是否存在平行于OM的直線l,使得直線l與橢圓C相交于A,B兩點,且以線段AB為直徑的圓恰好經(jīng)過原點?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓C的中心在原點,焦點在x軸上,離心率為,且過點,點A、B分別是橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.
(1)求橢圓C的方程;
(2)求點P的坐標;
(3)設(shè)M是直角三角PAF的外接圓圓心,求橢圓C上的點到點M的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓: 的離心率為 ,點 為其下焦點,點為坐標原點,過 的直線 :(其中)與橢圓 相交于兩點,且滿足:.
(1)試用 表示 ;
(2)求 的最大值;
(3)若 ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點在拋物線:上.
(1)若的三個頂點都在拋物線上,記三邊,,所在直線的斜率分別為,,,求的值;
(2)若四邊形的四個頂點都在拋物線上,記四邊,,,所在直線的斜率分別為,,,,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com