函數(shù)f(x)=log2(x2+2x)的單調(diào)遞減區(qū)間為________.
(-∞,-2)
分析:由題意,本題是一個對數(shù)型復(fù)合函數(shù),外層函數(shù)y=log2t是一個增函數(shù),內(nèi)層函數(shù)是t=x2+2x是一個開口向上的二次函數(shù),由復(fù)合函數(shù)單調(diào)性判斷規(guī)則,求出層函數(shù)在定義域上的單調(diào)遞減區(qū)間即為所求的函數(shù)f(x)=log2(x2+2x)的單調(diào)遞減區(qū)間,故可先求函數(shù)的定義域,令 x2+2x>0,此不等式的解集即為函數(shù)的定義域,再研究出內(nèi)層函數(shù)是t=x2+2x在定義域上的單調(diào)減區(qū)間即可得到復(fù)合函數(shù)的單調(diào)減區(qū)間
解答:由題意,函數(shù)f(x)=log2(x2+2x)是一個復(fù)合函數(shù),外層函數(shù)是y=log2t,內(nèi)層函數(shù)是t=x2+2x
令 x2+2x>0解得x>0或x<-2,即函數(shù)f(x)=log2(x2+2x)的定義域是(-∞,-2)∪(0,+∞)
由于外層函數(shù)y=log2t是增函數(shù),內(nèi)層函數(shù)t=x2+2x在(-∞,-2)上是減函數(shù),在(0,+∞)上是增函數(shù)
故復(fù)合函數(shù)f(x)=log2(x2+2x)在(-∞,-2)上是減函數(shù),在(0,+∞)上是增函數(shù)
綜上知函數(shù)f(x)=log2(x2+2x)的單調(diào)遞減區(qū)間為(-∞,-2)
故答案為(-∞,-2)
點評:本題考查對數(shù)函數(shù)有關(guān)的復(fù)合函數(shù)的單調(diào)性,求解此類題,分清內(nèi)導(dǎo)函數(shù)外層函數(shù),求出函數(shù)的定義域是解題的關(guān)鍵,其一般解題的步驟是先求出函數(shù)的定義域,再研究出外層函數(shù),內(nèi)層函數(shù)的單調(diào)性,再由復(fù)合函數(shù)的單調(diào)性的判斷規(guī)則得出復(fù)合函數(shù)的單調(diào)性,求出單調(diào)區(qū)間,此類題規(guī)律固定,同類題都用此方法解題即可