精英家教網 > 高中數學 > 題目詳情
17、定義在R上的函數f(x)滿足對任意x,y∈R都有f(x+y)=f(x)+f(y),求證:f(x)為奇函數.
分析:欲證f(x)為奇函數,即證f(-x)=-f(x)對任意x∈R成立,利用題中條件:“f(x+y)=f(x)+f(y),”使用賦值法:分別令x=y=0,得到f(0)的值;令y=-x結合f(0)即可得到f(-x)=-f(x),從而問題解決.
解答:證明:令x=y=0,代入f(x+y)=f(x)+f(y)式,
得f(0+0)=f(0)+f(0),即 f(0)=0.
令y=-x,代入f(x+y)=f(x)+f(y),
得 f(x-x)=f(x)+f(-x),又f(0)=0,則有
0=f(x)+f(-x).
即f(-x)=-f(x)對任意x∈R成立,
所以f(x)是奇函數.
點評:本題主要考查函數奇偶性的性質、抽象函數的奇偶性.函數雖然抽象,但我們必須掌握其基本方法,結合定義,使用賦值法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義在R上的函數f(x)既是偶函數又是周期函數,若f(x)的最小正周期是π,且當x∈[0,
π
2
]時,f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

20、已知定義在R上的函數f(x)=-2x3+bx2+cx(b,c∈R),函數F(x)=f(x)-3x2是奇函數,函數f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在R上的函數f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當x∈(0,4)時,f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個最低點之間距離為π,函數y=sin(2x+
π
3
)圖象所有對稱中心都在f(x)圖象的對稱軸上.
(1)求f(x)的表達式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
,
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x)的圖象是連續(xù)不斷的,且有如下對應值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數f(x)一定存在零點的區(qū)間是( 。

查看答案和解析>>

同步練習冊答案