【題目】如圖所示,該幾何體是由一個直三棱柱ADE﹣BCF和一個正四棱錐P﹣ABCD組合而成,AD⊥AF,AE=AD=2.
(Ⅰ)證明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱錐P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是 .
【答案】證明:(Ⅰ)∵幾何體是由一個直三棱柱ADE﹣BCF和一個正四棱錐P﹣ABCD組合而成,
∴AD⊥AF,AD⊥AB,
又AF∩AB=A,
∴AD⊥平面ABEF,
又AD平面PAD,
∴平面PAD⊥平面ABFE.
解:(Ⅱ)以A 為原點,AB、AE、AD的正方向為x,y,z軸,建立空間直角坐標系A(chǔ)﹣xyz
設(shè)正四棱棱的高為h,AE=AD=2,
則A(0,0,0),F(xiàn)(2,2,0),C(2,0,2),P(1,﹣1,1)
設(shè)平面ACF的一個法向量 =(x,y,z),
=(2,2,0), =(2,0,2),
則 ,取x=1,得 =(1,﹣1,﹣1),
設(shè)平面ACP的一個法向量 =(a,b,c),
則 ,取b=1,則 =(﹣1,1,1+h),
二面角C﹣AF﹣P的余弦值 ,
∴|cos< >|= = = ,
解得h=1.
【解析】
【考點精析】關(guān)于本題考查的平面與平面垂直的判定,需要了解一個平面過另一個平面的垂線,則這兩個平面垂直才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次不等式f(x)<0的解集為{x|x<﹣1或 ,則f(ex)>0的解集為( )
A.{x|x<﹣1或x>﹣ln3}
B.{x|﹣1<x<﹣ln3}
C.{x|x>﹣ln3}
D.{x|x<﹣ln3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的方程為y2=4x,直線L過定點P(﹣2,1),斜率為k.當k為何值時直線與拋物線:
(1)只有一個公共點;
(2)有兩個公共點;
(3)沒有公共點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cos22x﹣2,給出下列命題:
①β∈R,f(x+β)為奇函數(shù);
②α∈(0, ),f(x)=f(x+2α)對x∈R恒成立;
③x1 , x2∈R,若|f(x1)﹣f(x2)|=2,則|x1﹣x2|的最小值為 ;
④x1 , x2∈R,若f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z).其中的真命題有( )
A.①②
B.③④
C.②③
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A(n)表示正整數(shù)n的個位數(shù),an=A(n2)﹣A(n),A為數(shù)列{an}的前202項和,函數(shù)f(x)=ex﹣e+1,若函數(shù)g(x)滿足f[g(x)﹣ ]=1,且bn=g(n)(n∈N*),則數(shù)列{bn}的前n項和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的參數(shù)方程為 (θ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,點P的極坐標為(2 , ).
(Ⅰ)求直線l以及曲線C的極坐標方程;
(Ⅱ)設(shè)直線l與曲線C交于A,B兩點,求△PAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的偶函數(shù)f(x)在(﹣∞,0]上是減函數(shù),且 =2,則不等式f(log4x)>2的解集為( )
A.
B.(2,+∞)
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣1,﹣1].
(1)求m的值;
(2)若a,b,c∈R,且 + + =m,求證:a2+b2+c2≥36.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com