精英家教網 > 高中數學 > 題目詳情
(2009•上海模擬)已知實數a>0,直線l過點P(2,-2),且垂直于向量
m
=(3, -3)
,若直線l與圓x2+y2-2ax+a2-a=0相交,則實數a的取值范圍是
2<a<8
2<a<8
分析:由直線l過點P(2,-2),且垂直于向量
m
=(3, -3)
,若可得直線L的斜率K=1,直線l的方程為y+2=x-2,直線l與圓x2+y2-2ax+a2-a=0即(x-a)2+y2=a相交,則圓心(a,0)到直線l的距離d=
|a-4|
2
a
,可求
解答:解:由題意可得直線L的斜率K=1,直線l的方程為y+2=x-2即x-y-4=0
直線l與圓x2+y2-2ax+a2-a=0即(x-a)2+y2=a相交
則圓心(a,0)到直線l的距離d=
|a-4|
2
a

解不等式可得,2<a<8
故答案為:2<a<8
點評:本題主要考查了直線與圓相交的性質d<r的應用,解題的關鍵是熟練掌握圓的性質并能靈活應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2009•上海模擬)在解決問題:“證明數集A={x|2<x≤3}沒有最小數”時,可用反證法證明.假設a(2<a≤3)是A中的最小數,則取a′=
a+2
2
,可得:2=
2+2
2
<a′=
a+2
2
a+a
2
=a≤3
,與假設中“a是A中的最小數”矛盾!那么對于問題:“證明數集B={x|x=
n
m
,m,n∈N*,并且n<m}
沒有最大數”,也可以用反證法證明.我們可以假設x=
n0
m0
是B中的最大數,則可以找到x'=
n0+1
m0+1
n0+1
m0+1
(用m0,n0表示),由此可知x'∈B,x'>x,這與假設矛盾!所以數集B沒有最大數.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•上海模擬)定義區(qū)間(m,n),[m,n],(m,n],[m,n)的長度均為n-m,其中n>m.
(1)若關于x的不等式2ax2-12x-3>0的解集構成的區(qū)間的長度為
6
,求實數a的值;
(2)已知關于x的不等式sinxcosx+
3
cos2x+b>0
,x∈[0,π]的解集構成的各區(qū)間的長度和超過
π
3
,求實數b的取值范圍;
(3)已知關于x的不等式組
7
x+1
>1 
log2x+log2(tx+3t)<2
的解集構成的各區(qū)間長度和為6,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•上海模擬)已知全集U=R,集合A={x|x2-2x-3≤0,x∈R},B={x||x-2|<2,x∈R},那么集合A∩B=
{x|0<x≤3}
{x|0<x≤3}

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•上海模擬)已知集合A={z|z=1+i+i2+…+in,n∈N*},B={ω|ω=z1•z2,z1、z2∈A},(z1可以等于z2),從集合B中任取一元素,則該元素的模為
2
的概率為
2
7
2
7

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•上海模擬)已知點列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線y=
x4
上的點,點列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點,其中x1=a(0<a<1),對任意的n∈N*,點An、Bn、An+1構成以Bn為頂點的等腰三角形.
(1)證明:數列{yn}是等差數列;
(2)求證:對任意的n∈N*,xn+2-xn是常數,并求數列{xn}的通項公式;
(3)對上述等腰三角形AnBnAn+1添加適當條件,提出一個問題,并做出解答.(根據所提問題及解答的完整程度,分檔次給分)

查看答案和解析>>

同步練習冊答案