【題目】已知a是實常數(shù),函數(shù).
(1)若曲線在處的切線過點A(0,﹣2),求實數(shù)a的值;
(2)若有兩個極值點(),
①求證:;
②求證:.
【答案】(1)證明詳見解析;(2)證明詳見解析.
【解析】
試題本題考查導數(shù)的運用:求切線方程和單調(diào)區(qū)間、極值,主要考查導數(shù)的幾何意義和分類討論的思想方法,注意函數(shù)的單調(diào)性的運用,屬于中檔題.第一問,求出的導數(shù),求得切線的斜率和切點,由點斜式方程可得切線方程,代入點(0,﹣2),即可解得a;第二問,①依題意:有兩個不等實根(),設(shè),求出導數(shù),討論當a≥0時,當a<0時,求得函數(shù)g(x)的單調(diào)性,令極大值大于0,解不等式即可得證;②由①知:,變化,求得的增區(qū)間,通過導數(shù),判斷,設(shè)(0<x<1),求得h(x)的單調(diào)性,即可得證.
試題解析:(1)由已知可得,(x>0),切點,
在x=1處的切線斜率為,
切線方程:,
把代入得:a=1;
(2)證明:①依題意:有兩個不等實根(),
設(shè)則:(x>0)
當a≥0時,有,所以是增函數(shù),不符合題意;
當a<0時:由得:,
列表如下:
依題意:,解得:,
綜上可得,得證;
②由①知:,變化如下:
由表可知:在[x1,x2]上為增函數(shù),所以:
又,故,
由(1)知:,()
設(shè)(),則成立,所以單調(diào)遞減,
故:,也就是,
綜上所證:成立.
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列與中,,,數(shù)列的前項和滿足,.
(1)求,,,的值,猜測的通項公式,并證明之.
(2)求數(shù)列與的通項公式;
(3)設(shè),.證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某新建小區(qū)規(guī)劃利用一塊空地進行配套綠化.已知空地的一邊是直路,余下的外圍是拋物線的一段弧,直路的中垂線恰是該拋物線的對稱軸(如圖),點O是的中點.擬在這個地上劃出一個等腰梯形區(qū)域種植草坪,其中均在該拋物線上.經(jīng)測量,直路長為60米,拋物線的頂點P到直路的距離為60米.設(shè)點C到拋物線的對稱軸的距離為m米,到直路的距離為n米.
(1)求出n關(guān)于m的函數(shù)關(guān)系式.
(2)當m為多大時,等腰梯形草坪的面積最大?并求出其最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知半徑為的圓,圓心在軸正半軸上,且與直線相切.
(1)求圓的方程;
(2)在圓上,是否存在點,滿足,其中,點的坐標是.若存在,指出有幾個這樣的點;若不存在,請說明理由;
(3)若在圓上存在點,使得直線與圓相交不同兩點,求的取值范圍.并求出使得的面積最大的點的坐標及對應的的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD為直角梯形,AD//BC,且,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E為AD的中點,△PAD為等邊三角形,M是棱PC上的一點,設(shè)(M與C不重合).
(1)求證:CD⊥DP;
(2)若PA∥平面BME,求k的值;
(3)若二面角M﹣BE﹣A的平面角為150°,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)滿足.
(1)求的解析式;
(2)若在上單調(diào),求的取值范圍;
(3)設(shè)( 且a≠1),(且),當時,有最大值14,試求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的標準方程為,該橢圓經(jīng)過點,且離心率為.
(1)求橢圓的標準方程;
(2)過橢圓長軸上一點作兩條互相垂直的弦.若弦的中點分別為,證明:直線恒過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】命題方程表示雙曲線;命題不等式的解集是. 為假, 為真,求的取值范圍.
【答案】
【解析】試題分析:由命題方程表示雙曲線,求出的取值范圍,由命題不等式的解集是,求出的取值范圍,由為假, 為真,得出一真一假,分兩種情況即可得出的取值范圍.
試題解析:
真
,
真 或
∴
真假
假真
∴范圍為
【題型】解答題
【結(jié)束】
18
【題目】如圖,設(shè)是圓上的動點,點是在軸上的投影, 為上一點,且.
(1)當在圓上運動時,求點的軌跡的方程;
(2)求過點且斜率為的直線被所截線段的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com