已知圓經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn),且圓心在軸上.
(1)求圓的方程;
(2)設(shè)直線經(jīng)過點(diǎn),且與圓相交所得弦長為,求直線的方程.
(1);(2)

試題分析:(1)本題求圓的方程,已知圓上兩點(diǎn)即圓心的縱坐標(biāo),所以需要求出圓的半徑和圓心的橫坐標(biāo)兩個(gè)值即可確定圓的方程,通過列解方程即可求出相應(yīng)的量,該題的半徑的長剛好就是圓心的橫坐標(biāo)的值,這個(gè)條件要用上.
(2)該小題是直線與圓的位置關(guān)系問題,特別要先判斷直線的斜率不存在的時(shí)候的情況,通過畫圖可知符合條件,其次是斜率存在時(shí),通過重點(diǎn)三角形(弦心距,半弦長,半徑)的關(guān)系可以求出弦心距的長,從而再用圓心到直線的距離公式求出直線的斜率,又過已知點(diǎn)即可寫出直線方程.
試題解析:(1)設(shè)圓的圓心坐標(biāo)為,
依題意,有,
,解得,
所以圓的方程為.
(2)依題意,圓的圓心到直線的距離為,
所以直線符合題意.另,設(shè)直線方程為,即,
,
解得, 所以直線的方程為,即.
綜上,直線的方程為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓,
(Ⅰ)若過定點(diǎn)()的直線與圓相切,求直線的方程;
(Ⅱ)若過定點(diǎn)()且傾斜角為的直線與圓相交于兩點(diǎn),求線段的中點(diǎn)的坐標(biāo);
(Ⅲ) 問是否存在斜率為的直線,使被圓截得的弦為,且以為直徑的圓經(jīng)過原點(diǎn)?若存在,請(qǐng)寫出求直線的方程;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C和軸相切,圓心C在直線上,且被直線截得的弦長為,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

的面積為                     ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

與直線l:x+y-2=0和曲線x2+y2-12x-12y+54=0都相切的半徑最小的圓的標(biāo)準(zhǔn)方程是    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)P(a,b)關(guān)于直線l的對(duì)稱點(diǎn)為P′(b+1,a-1),則圓Cx2y2-6x-2y=0關(guān)于直線l對(duì)稱的圓C′的方程為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知等邊三角形OAB的三個(gè)頂點(diǎn)都在拋物線y2=2x上,其中O為坐標(biāo)原點(diǎn),則△AOB的外接圓的方程是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若圓關(guān)于直線和直線都對(duì)稱,則的值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知P是圓C:上的一個(gè)動(dòng)點(diǎn),A(,1),則的最小值為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案