【題目】如圖,已知拋物線E:y2=4x與圓M:(x3)2+y2=r2(r>0)相交于A,B,C,D四個(gè)點(diǎn).
(1)求r的取值范圍;
(2)設(shè)四邊形ABCD的面積為S,當(dāng)S最大時(shí),求直線AD與直線BC的交點(diǎn)P的坐標(biāo).
【答案】(1) r∈(2,3). (2) (,0).
【解析】
(1)聯(lián)立拋物線與圓的方程,利用判別式與韋達(dá)定理列不等式組,從而可得結(jié)果;(2)根據(jù)S=(+)·(x2x1)=(4+4)(x2x1),利用韋達(dá)定理將S表示為關(guān)于r的函數(shù),換元后利用導(dǎo)數(shù)可求當(dāng)S最大時(shí)直線AD與直線BC的交點(diǎn)P的坐標(biāo).
(1)聯(lián)立拋物線與圓的方程
消去y,得x22x+9r2=0.
由題意可知x22x+9r2=0在(0,+∞)上有兩個(gè)不等的實(shí)數(shù)根,
所以解得2<r<3,即r∈(2,3).
(2)根據(jù)(1)可設(shè)方程x22x+9r2=0的兩個(gè)根分別為x1,x2(0<x1<x2),
則A(x1,2),B(x1, 2),C(x2, 2),D(x2,2),且x1+x2=2,x1x2=9r2,
所以S=(+)·(x2x1)=(4+4)(x2x1)
=2·=2·.
令t=∈(0,1),f(t)=S2=4(2+2t)(44t2)= 32(t3+t2t1),
f'(t)= 32(3t2+2t1)= 32(t+1)(3t1),可得f(t)在(0,)上單調(diào)遞增,在(,1)上單調(diào)遞減,即當(dāng)t=時(shí),四邊形ABCD的面積取得最大值.
根據(jù)拋物線與圓的對(duì)稱性,可設(shè)P點(diǎn)坐標(biāo)為(m,0),由P,A,D三點(diǎn)共線,可得=,整理得m==t=,
所以點(diǎn)P的坐標(biāo)為(,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開放以來(lái),人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來(lái),移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動(dòng)支付方式的使用情況,從全校學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
交付金額(元) 支付方式 | (0,1000] | (1000,2000] | 大于2000 |
僅使用A | 18人 | 9人 | 3人 |
僅使用B | 10人 | 14人 | 1人 |
(Ⅰ)從全校學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生上個(gè)月A,B兩種支付方式都使用的概率;
(Ⅱ)從樣本僅使用A和僅使用B的學(xué)生中各隨機(jī)抽取1人,以X表示這2人中上個(gè)月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒(méi)有變化.現(xiàn)從樣本僅使用A的學(xué)生中,隨機(jī)抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認(rèn)為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若有兩個(gè)不同的零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xsinx的圖象是下列兩個(gè)圖象中的一個(gè),如圖,請(qǐng)你選擇后再根據(jù)圖象作出下面的判斷:若x1,x2∈(),且f(x1)<f(x2),則( )
A.x1>x2B.x1+x2>0C.x1<x2D.x12<x22
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知是圓的直徑,,在圓上且分別在的兩側(cè),其中,.現(xiàn)將其沿折起使得二面角為直二面角,則下列說(shuō)法不正確的是( )
A.,,,在同一個(gè)球面上
B.當(dāng)時(shí),三棱錐的體積為
C.與是異面直線且不垂直
D.存在一個(gè)位置,使得平面平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)D,D在平面PAB內(nèi)的正投影為點(diǎn)E,連結(jié)PE并延長(zhǎng)交AB于點(diǎn)G.
(Ⅰ)證明:G是AB的中點(diǎn);
(Ⅱ)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說(shuō)明作法及理由),并求四面體PDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,“大衍數(shù)列”:0,2,4,8,12….來(lái)源于《乾坤譜》中對(duì)《易傳》“大衍之?dāng)?shù)五十”的推論,主要用于解釋中國(guó)傳統(tǒng)文化中的太極衍生過(guò)程中曾經(jīng)經(jīng)歷過(guò)的兩儀數(shù)量總和.下圖是求大衍數(shù)列前項(xiàng)和的程序框圖.執(zhí)行該程序框圖,輸入,則輸出的( )
A.100B.140C.190D.250
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn),直線的斜率與直線的斜率乘積為.
(1)求橢圓的方程;
(2)不經(jīng)過(guò)點(diǎn)的直線(且)與橢圓交于,兩點(diǎn),關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為(與點(diǎn)不重合),直線,與軸分別交于兩點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性.
(2)試問(wèn)是否存在,使得對(duì)恒成立?若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com