如圖,設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1,F(xiàn)2,線段OF1,OF2的中點分別為B1,B2,且△AB1B2是面積為4的直角三角形.
(1)求該橢圓的離心率和標準方程;
(2)過B1作直線l交橢圓于P,Q兩點,使PB2⊥QB2,求直線l的方程.
(1)+=1,e= ;(2) x+2y+2=0和x-2y+2=0.
解析試題分析:(1)設所求橢圓的標準方程為+=1(a>b>0),右焦點為F2(c,0).因為△AB1B2是直角三角形,又|AB1|=|AB2|,故∠B1AB2為直角,因此|OA|=|OB2|,得b=.
結合c2=a2-b2,得4b2=a2-b2,故a2=5b2,c2=4b2,∴離心率e==.
在Rt△AB1B2中,OA⊥B1B2,故S△AB1B2=|B1B2|·|OA|=|OB2|·|OA|=b=b2.
由題設條件S△AB1B2=4,得b2=4,從而a2=5b2=20.
因此所求橢圓的標準方程為+=1.
(2)由(1),知B1(-2,0),B2(2,0).由題意,知直線l的傾斜角不為0,故可設直線l的方程為x=my-2,代入橢圓方程,得(m2+5)y2-4my-16=0.
設P(x1,y1),Q(x2,y2),則y1,y2是上面方程的兩根,因此y1+y2=,y1·y2=-.
又=(x1-2,y1),=(x2-2,y2),
∴·=(x1-2)(x2-2)+y1y2=(my1-4)(my2-4)+y1y2=(m2+1)y1y2-4m(y1+y2)+16=--+16=-.
由PB2⊥QB1,得·=0,即16m2-64=0,解得m=±2.
∴滿足條件的直線有兩條,其方程分別為x+2y+2=0和x-2y+2=0.
考點:橢圓的標準方程;橢圓的簡單性質;直線與橢圓的綜合應用。
點評:直線與圓錐曲線聯(lián)系在一起的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關系的判定,弦長問題、最值問題、對稱問題、軌跡問題等.突出考查了數(shù)形結合、分類討論、函數(shù)與方程、等價轉化等數(shù)學思想方法.
科目:高中數(shù)學 來源: 題型:解答題
過拋物線的焦點F作斜率分別為的兩條不同的直線,且,相交于點A,B,相交于點C,D。以AB,CD為直徑的圓M,圓N(M,N為圓心)的公共弦所在的直線記為。
(I)若,證明;;
(II)若點M到直線的距離的最小值為,求拋物線E的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,橢圓:的右焦點與拋物線的焦點重合,過作與軸垂直的直線與橢圓交于S、T兩點,與拋物線交于C、D兩點,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓相交于兩點,設為橢圓上一點,且滿足(為坐標原點),當時,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
橢圓:的右焦點為且為常數(shù),離心率為,過焦點、傾斜角為的直線交橢圓與M,N兩點,
(1)求橢圓的標準方程;
(2)當=時,=,求實數(shù)的值;
(3)試問的值是否與直線的傾斜角的大小無關,并證明你的結論
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為
(1)求雙曲線C的方程;
(2)若直線與雙曲線C恒有兩個不同的交點A和B,且(其中O為原點). 求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的中心在坐標原點,焦點在軸上,其左、右焦點分別為、,短軸長為,點在橢圓上,且滿足的周長為6.
(Ⅰ)求橢圓的方程;;
(Ⅱ)設過點的直線與橢圓相交于A、B兩點,試問在x軸上是否存在一個定點M使恒為定值?若存在求出該定值及點M的坐標,若不存在請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設圓的極坐標方程為,以極點為直角坐標系的原點,極軸為軸正半軸,兩坐標系長度單位一致,建立平面直角坐標系.過圓上的一點作平行于軸的直線,設與軸交于點,向量.
(Ⅰ)求動點的軌跡方程;
(Ⅱ)設點 ,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:的離心率為,且經過點.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設斜率為1的直線l與橢圓C相交于,兩點,連接MA,MB并延長交直線x=4于P,Q兩點,設yP,yQ分別為點P,Q的縱坐標,且.求△ABM的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設分別是橢圓的左,右焦點。
(Ⅰ)若是第一象限內該橢圓上的一點,且,求點的坐標。
(Ⅱ)設過定點的直線與橢圓交于不同的兩點,且為銳角(其中O為坐標原點),求直線的斜率的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com