已知集合則k=1是M∩N=φ的
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:導(dǎo)練必修一數(shù)學(xué)蘇教版 蘇教版 題型:022
已知集合M={x|-1≤x<2},N={x|x-k≤0},若M∩N≠,則實數(shù)k的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:101網(wǎng)校同步練習(xí) 高二數(shù)學(xué) 蘇教版(新課標(biāo)·2004年初審) 蘇教版 題型:044
已知集合A={a1,a2,a3,…,ak}(k≥2),其中ai∈Z(i=1,2,…,k),由A中的元素構(gòu)成兩個相應(yīng)的集合S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A},其中(a,b)是有序?qū)崝?shù)對,集合S和T的元素個數(shù)分別為m,n.若對于任意的a∈A,總有-aA,則稱集合A具有性質(zhì)P.
(Ⅰ)檢驗集合{0,1,2,3}與{-1,2,3}是否具有性質(zhì)P,并對其中具有性質(zhì)P的集合寫出相應(yīng)的集合S和T;
(Ⅱ)對任何具有性質(zhì)P的集合A,證明:;
(Ⅲ)判斷m和n的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:荊門市2008屆高三第一輪復(fù)習(xí)集合與簡易邏輯單元測試卷 題型:022
已知集合M={x|1≤x≤10,x∈N},對它的非空子集A,將A中每個元素k,都乘以(-1)k再求和(如A={1,3,6},可求得和為(-1)·1+(-1)3·3+(-1)6·6=2,則對M的所有非空子集,這些和的總和是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣東省梅山縣東山中學(xué)2012屆高三第二次月考數(shù)學(xué)理科試題 題型:044
已知集合A={a1,a2,…,ak}(k≥2),其中ai∈Z(i=1,2,…,k),由A中的元素構(gòu)成兩個相應(yīng)的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A}.其中(a,b)是有序數(shù)對,集合S和T中的元素個數(shù)分別為m和m.若對于任意的a∈A,總有,則稱集合A具有性質(zhì)P.
(Ⅰ)檢驗集合{0,1,2,3}與{-1,2,3}是否具有性質(zhì)P,并對其中具有性質(zhì)P的集合,寫出相應(yīng)的集合S和T;
(Ⅱ)對任何具有性質(zhì)P的集合A,證明:;
(Ⅲ)判斷m和n的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com