【題目】函數(shù)f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若對(duì)任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,則實(shí)數(shù)m的取值范圍是(
A.
B.
C.
D.

【答案】D
【解析】解:當(dāng)x∈[0, ]時(shí),2x+ ∈[ , ],sin(2x+ )∈[ ,1], f(x)=2sin(2x+ )∈[1,2],
同理可得2x﹣ ∈[﹣ , ],cos(2x﹣ )∈[ ,1],
g(x)=mcos(2x﹣ )﹣2m+3∈[﹣ +3,﹣m+3],
對(duì)任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,
,求得1≤m≤ ,
故選:D.
由題意可得,當(dāng)x∈[0, ]時(shí),g(x)的值域是f(x)的值域的子集,由此列出不等式組,求得m的范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若不等式上恒成立,求實(shí)數(shù)a的取值范圍;

(Ⅲ)若,求證不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙十一網(wǎng)購(gòu)狂歡,快遞業(yè)務(wù)量猛增.甲、乙兩位快遞員日到日每天送件數(shù)量的莖葉圖如圖所示.

)根據(jù)莖葉圖判斷哪個(gè)快遞員的平均送件數(shù)量較多(寫出結(jié)論即可);

)求甲送件數(shù)量的平均數(shù);

)從乙送件數(shù)量中隨機(jī)抽取個(gè),求至少有一個(gè)送件數(shù)量超過甲的平均送件數(shù)量的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)的圖象關(guān)于點(diǎn)(﹣ ,0)成中心對(duì)稱,且對(duì)任意的實(shí)數(shù)x都有 ,f(﹣1)=1,f(0)=﹣2,則f(1)+f(2)+…+f(2 017)=(
A.0
B.﹣2
C.1
D.﹣4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)在其定義區(qū)間[a,b]上滿足①f(x)>0;②f′(x)<0;③對(duì)任意的x1 , x2∈[a,b],式子 恒成立.記S1= f(x)dx,S2= (b﹣a),S3=f(b)(b﹣a),則S1 , S2 , S3的大小關(guān)系為 . (按由小到大的順序)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲乙丙三輛汽車在不同速度下的燃油效率情況,下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時(shí)的速度1小時(shí),消耗10升汽油

D. 某城市機(jī)動(dòng)車最高限速80千米/小時(shí),相同條件下,在該市用丙車比乙車更省油.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))是定義在上的奇函數(shù).

(1)求的值;

(2)求函數(shù)的值域;

(3)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .任取t∈R,若函數(shù)f(x)在區(qū)間[t,t+1]上的最大值為M(t),最小值為m(t),記g(t)=M(t)﹣m(t).
(1)求函數(shù)f(x)的最小正周期及對(duì)稱軸方程;
(2)當(dāng)t∈[﹣2,0]時(shí),求函數(shù)g(t)的解析式;
(3)設(shè)函數(shù)h(x)=2|xk|,H(x)=x|x﹣k|+2k﹣8,其中實(shí)數(shù)k為參數(shù),且滿足關(guān)于t的不等式 有解,若對(duì)任意x1∈[4,+∞),存在x2∈(﹣∞,4],使得h(x2)=H(x1)成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)橢圓)的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上, , 的面積為.

(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)是否存在圓心在軸上的圓,使圓在軸的上方與橢圓

有兩個(gè)交點(diǎn),且圓在這兩個(gè)交點(diǎn)處的兩條切線相互垂直并分別過不同的焦點(diǎn)?若存在,求圓的方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案