【題目】已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的非負(fù)半軸重合,若曲線C1的方程為ρsin(θ+ )+2 =0,曲線C2的參數(shù)方程為 (θ為參數(shù)).
(1)將C1的方程化為直角坐標(biāo)方程;
(2)若點(diǎn)Q為C2上的動(dòng)點(diǎn),P為C1上的動(dòng)點(diǎn),求|PQ|的最小值.
【答案】
(1)解:曲線C1的方程為ρsin(θ+ )+2 =0,展開(kāi)可得: + +2 =0,可得直角標(biāo)準(zhǔn)方程: y+x+4 =0
(2)解:設(shè)點(diǎn)Q(2cosθ,2sinθ),則點(diǎn)Q到直線C1的距離d= = +2 ≥2 ﹣2,當(dāng)且僅當(dāng) =﹣1時(shí)取等號(hào).
∴|PQ|的最小值為2 ﹣2
【解析】(1)曲線C1的方程為ρsin(θ+ )+2 =0,展開(kāi)可得: + +2 =0,利用 代入即可得出直角標(biāo)準(zhǔn)方程.(2)設(shè)點(diǎn)Q(2cosθ,2sinθ),可得點(diǎn)Q到直線C1的距離d= +2 ,利用三角函數(shù)的單調(diào)性值域即可得出最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,過(guò)點(diǎn)P分別做圓O的切線PA、PB和割線PCD,弦BE交CD于F,滿足P、B、F、A四點(diǎn)共圓.
(Ⅰ)證明:AE∥CD;
(Ⅱ)若圓O的半徑為5,且PC=CF=FD=3,求四邊形PBFA的外接圓的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣2|﹣|x+1|.
(1)解不等式f(x)>1.
(2)當(dāng)x>0時(shí),函數(shù)g(x)= (a>0)的最小值總大于函數(shù)f(x),試求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓C: =1(α>b>0)經(jīng)過(guò)點(diǎn)( , ),且原點(diǎn)、焦點(diǎn),短軸的端點(diǎn)構(gòu)成等腰直角三角形.
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線(切線斜率存在)與橢圓C恒有兩個(gè)交點(diǎn)A,B.且 ?若存在,求出該圓的方程,若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,EP交圓于E,C兩點(diǎn),PD切圓于D,G為CE上一點(diǎn)且PG=PD,連接DG并延長(zhǎng)交圓于點(diǎn)A,作弦AB垂直EP,垂足為F.
(1)求證:BD⊥AD;
(2)若AC=BD,AB=6,求弦DE的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定圓:,動(dòng)圓過(guò)點(diǎn) 且與圓相切,記圓心的軌跡為.
(1)求曲線的方程;
(2)已知直線 交圓于兩點(diǎn).是曲線上兩點(diǎn),若四邊形的對(duì)角線,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面立角坐標(biāo)系中,過(guò)點(diǎn)的圓的圓心在軸上,且與過(guò)原點(diǎn)傾斜角為的直線相切.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)在直線上,過(guò)點(diǎn)作圓的切線、,切點(diǎn)分別為、,求經(jīng)過(guò)、、、四點(diǎn)的圓所過(guò)的定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】駐馬店市政府委托市電視臺(tái)進(jìn)行“創(chuàng)建森林城市”知識(shí)問(wèn)答活動(dòng),市電視臺(tái)隨機(jī)對(duì)該市15~65歲的人群抽取了人,繪制出如圖1所示的頻率分布直方圖,回答問(wèn)題的統(tǒng)計(jì)結(jié)果如表2所示.
(1)分別求出的值;
(2)從第二、三、四、五組回答正確的人中用分層抽樣的方法抽取7人,則從第二、三、四、五組每組回答正確的人中應(yīng)各抽取多少人?
(3)在(2)的條件下,電視臺(tái)決定在所抽取的7人中隨機(jī)選2人頒發(fā)幸運(yùn)獎(jiǎng),求所抽取的人中第二組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解當(dāng)下高二男生的身高狀況,某地區(qū)對(duì)高二年級(jí)男生的身高(單位: )進(jìn)行了抽樣調(diào)查,得到的頻率分布直方圖如圖所示.已知身高在之間的男生人數(shù)比身高在之間的人數(shù)少1人.
(1)若身高在以內(nèi)的定義為身高正常,而該地區(qū)共有高二男生18000人,則該地區(qū)高二男生中身高正常的大約有多少人?
(2)從所抽取的樣本中身高在和的男生中隨機(jī)再選出2人調(diào)查其平時(shí)體育鍛煉習(xí)慣對(duì)身高的影響,則所選出的2人中至少有一人身高大于185的概率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com