已知函數(shù),且
(1) 試用含的代數(shù)式表示b,并求
的單調(diào)區(qū)間;
(2)令,設(shè)函數(shù)
在
處取得極值,記點M (
,
),N(
,
),P(
),
,請仔細(xì)觀察曲線
在點P處的切線與線段MP的位置變化趨勢,并解釋以下問題:
(I)若對任意的m (
, x
),線段MP與曲線f(x)均有異于M,P的公共點,試確定t的最小值,并證明你的結(jié)論;
(II)若存在點Q(n ,f(n)), x n< m,使得線段PQ與曲線f(x)有異于P、Q的公共點,請直接寫出m的取值范圍(不必給出求解過程)
略
解法1
(Ⅰ)依題意,得
由.
從而
令
①當(dāng)a>1時,
當(dāng)x變化時,與
的變化情況如下表:
x | | | |
| + | - | + |
| 單調(diào)遞增 | 單調(diào)遞減 | 單調(diào)遞增 |
由此得,函數(shù)的單調(diào)增區(qū)間為
和
,單調(diào)減區(qū)間為
。
②當(dāng)時,
此時有
恒成立,且僅在
處
,故函數(shù)
的單調(diào)增區(qū)間為R
③當(dāng)時,
同理可得,函數(shù)
的單調(diào)增區(qū)間為
和
,單調(diào)減區(qū)間為
綜上:
當(dāng)時,函數(shù)
的單調(diào)增區(qū)間為
和
,單調(diào)減區(qū)間為
;
當(dāng)時,函數(shù)
的單調(diào)增區(qū)間為R;
當(dāng)時,函數(shù)
的單調(diào)增區(qū)間為
和
,單調(diào)減區(qū)間為
.
(Ⅱ)由得
令
得
由(1)得增區(qū)間為
和
,單調(diào)減區(qū)間為
,所以函數(shù)
在處
取得極值,故M(
)N(
)。
觀察的圖象,有如下現(xiàn)象:
①當(dāng)m從-1(不含-1)變化到3時,線段MP的斜率與曲線在點P處切線的斜率
之差Kmp-
的值由正連續(xù)變?yōu)樨?fù)。
②線段MP與曲線是否有異于H,P的公共點與Kmp-的m正負(fù)有著密切的關(guān)聯(lián);
③Kmp-=0對應(yīng)的位置可能是臨界點,故推測:滿足Kmp-
的m就是所求的t最小值,下面給出證明并確定的t最小值.曲線
在點
處的切線斜率
;
線段MP的斜率Kmp
當(dāng)Kmp-=0時,解得
直線MP的方程為
令
當(dāng)時,
在
上只有一個零點
,可判斷
函數(shù)在
上單調(diào)遞增,在
上單調(diào)遞減,又
,所以
在
上沒有零點,即線段MP與曲線
沒有異于M,P的公共點。
當(dāng)時,
.
所以存在使得
即當(dāng)MP與曲線
有異于M,P的公共點
綜上,t的最小值為2.
(2)類似(1)于中的觀察,可得m的取值范圍為
解法2:
(1)同解法一.
(2)由得
,令
,得
由(1)得的單調(diào)增區(qū)間為
和
,單調(diào)減區(qū)間為
,所以函數(shù)在處取得極值。故M(
).N(
)
(Ⅰ) 直線MP的方程為
由
得
線段MP與曲線有異于M,P的公共點等價于上述方程在(-1,m)上有根,即函數(shù)
上有零點.
因為函數(shù)為三次函數(shù),所以
至多有三個零點,兩個極值點.
又.因此,
在
上有零點等價于
在
內(nèi)恰有一個極大值點和一個極小值點,即
內(nèi)有兩不相等的實數(shù)根.
等價于 即
又因為,所以m 的取值范圍為(2,3),從而滿足題設(shè)條件的r的最小值為2.
科目:高中數(shù)學(xué) 來源:2014屆吉林省高二下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),且
(1)求;
(2)判斷的奇偶性;
(3)判斷在
上的單調(diào)性,并證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山西曲沃中學(xué)高二下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),且
(1)求的值
(2)判斷在
上的單調(diào)性,并利用定義給出證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江蘇省高一上學(xué)期第二次月考數(shù)學(xué)試卷 題型:解答題
(本小題滿分14分)已知函數(shù),且
.
(1)判斷的奇偶性并說明理由;
(2)判斷在區(qū)間
上的單調(diào)性,并證明你的結(jié)論;
(3)若在區(qū)間上,不等式
恒成立,試確定實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年浙江省高二下學(xué)期期中考試數(shù)學(xué)理卷 題型:解答題
已知函數(shù),且
(1)求函數(shù)的表達(dá)式;
(2)若數(shù)列的項滿足
,試求
;
(3)猜想數(shù)列的通項,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com