【題目】甲、乙兩廠生產(chǎn)同一產(chǎn)品,為了解甲、乙兩廠的產(chǎn)品質(zhì)量,以確定這一產(chǎn)品最終的供貨商,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測量產(chǎn)品中的微量元素xy的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):

編號

1

2

3

4

5

x

169

178

166

175

180

y

75

80

77

70

81

(1)已知甲廠生產(chǎn)的產(chǎn)品共有98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量.

(2)當(dāng)產(chǎn)品中的微量元素x,y滿足x≥175,且y≥75,該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量.

(3)從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)ξ的分布列及其均值.

【答案】(1)35;(2)14;(3)

【解析】解:(1)7,5×735,即乙廠生產(chǎn)的產(chǎn)品數(shù)量為35件.

(2)易見只有編號為2,5的產(chǎn)品為優(yōu)等品,所以乙廠生產(chǎn)的產(chǎn)品中的優(yōu)等品,故乙廠生產(chǎn)有大約35×14()優(yōu)等品,

(3)X的取值為0,1,2.

P(X0)

P(X1)

P(X2).

所以X的分布列為

X

0

1

2

P




X的均值為E(X).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)是定義在上的奇函數(shù),且為偶函數(shù),當(dāng)時,,若有三個零點,則實數(shù)的取值集合是( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用另一種形式表示下列集合:

(1){絕對值不大于3的整數(shù)};

(2){所有被3整除的數(shù)};

(3){x|x=|x|,x∈Zx<5};

(4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一裝有水的直三棱柱容器(厚度忽略不計),上下底面均為邊長為5的正三角形,側(cè)棱為10,側(cè)面水平放置,如圖所示,點, , , 分別在棱, , , 上,水面恰好過點, , ,且

(1)證明: ;

(2)若底面水平放置時,求水面的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的中心在原點,對稱軸為坐標(biāo)軸,一條漸近線方程為,右焦點,雙曲線的實軸為,為雙曲線上一點(不同于,),直線,分別與直線交于,兩點.

)求雙曲線的方程.

)證明為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式|x+1|+|x﹣1|<4的解集為M.
(1)設(shè)Z是整數(shù)集,求Z∩M;
(2)當(dāng)a,b∈M時,證明:2|a+b|<|4+ab|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】)設(shè)f(x)、g(x)、h(x)是定義域為R的三個函數(shù),對于命題:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函數(shù),則f(x)、g(x)、h(x)均是增函數(shù);②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T為周期的函數(shù),則f(x)、g(x)、h(x)均是以T為周期的函數(shù),下列判斷正確的是(  )
A.①和②均為真命題
B.①和②均為假命題
C.①為真命題,②為假命題
D.①為假命題,②為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一塊正方形菜地 , 所在直線是一條小河,收貨的蔬菜可送到 點或河邊運走。于是,菜地分為兩個區(qū)域 ,其中 中的蔬菜運到河邊較近, 中的蔬菜運到 點較近,而菜地內(nèi) 的分界線 上的點到河邊與到 點的距離相等,現(xiàn)建立平面直角坐標(biāo)系,其中原點 的中點,點 的坐標(biāo)為(1,0),如圖

(1)求菜地內(nèi)的分界線 的方程
(2)菜農(nóng)從蔬菜運量估計出 面積是 面積的兩倍,由此得到 面積的“經(jīng)驗值”為 。設(shè) 上縱坐標(biāo)為1的點,請計算以 為一邊、另一邊過點 的矩形的面積,及五邊形 的面積,并判斷哪一個更接近于 面積的經(jīng)驗值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示單位:cm,四邊形ABCD是直角梯形,求圖中陰影部分繞AB旋轉(zhuǎn)一周所成幾何體的表面積和體積

查看答案和解析>>

同步練習(xí)冊答案