【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn)焦點(diǎn)在x軸上,橢圓C上一點(diǎn)A(2,﹣1)到兩焦點(diǎn)距離之和為8.若點(diǎn)B是橢圓C的上頂點(diǎn),點(diǎn)P,Q是橢圓C上異于點(diǎn)B的任意兩點(diǎn).
(1)求橢圓C的方程;
(2)若BP⊥BQ,且滿足32的點(diǎn)D在y軸上,求直線BP的方程;
(3)若直線BP與BQ的斜率乘積為常數(shù)λ(λ<0),試判斷直線PQ是否經(jīng)過定點(diǎn).若經(jīng)過定點(diǎn),請(qǐng)求出定點(diǎn)坐標(biāo);若不經(jīng)過定點(diǎn),請(qǐng)說明理由.
【答案】(1)(2)y=±x+2(3)經(jīng)過定點(diǎn);定點(diǎn)(0,)
【解析】
(1)利用橢圓的定義和待定系數(shù)法可求橢圓的方程;
(2)利用BP⊥BQ, 32可得直線的斜率,從而可求直線BP的方程;
(3)先表示直線PQ的方程,結(jié)合直線BP與BQ的斜率乘積為常數(shù),建立等量關(guān)系進(jìn)行判定.
(1)由題意設(shè)橢圓的方程為:1
由題意知:2a=8,1,解得:a2=16,b2=4,
所以橢圓的方程為:.
(2)由(1)得B(0,2)顯然直線BP的斜率存在且不為零,
設(shè)直線BP為:y=kx+2,與橢圓聯(lián)立整理得:(1+4k2)x2+16kx=0,x,所以P(,);
直線BQ:yx+2,代入橢圓中:(4+k2)x2﹣16kx=0,
同理可得Q(,),由32得,
∴3(xD﹣xP)=2(xQ﹣xD),∴5xD=2xQ+3xP,
由于D在y軸上,所以xD=0,∴,解得:k2=2,所以k,
所以直線BP的方程為:y=±x+2.
(3)當(dāng)直線PQ的斜率不存在時(shí),
設(shè)直線PQ的方程:x=t,P(x,y),Q(x',y'),
與橢圓聯(lián)立得:4y2=16﹣t2,yy',xx'=t2,kBPkBQ,
要使是一個(gè)常數(shù)λ,λ<0,所以不成立.
當(dāng)直線PQ斜率存在時(shí),設(shè)直線PQ的方程為:y=kx+t,設(shè)P(x,y),Q(x',y'),
與橢圓聯(lián)立整理得:(1+4k2)x2+8ktx+4t2﹣16=0,x+x',xx',
∴y+y'=k(x+x')+2t,,
∴kBPkBQ,
所以由題意得:λ,解得:t,所以不論k為何值,x=0時(shí),y,
綜上可知直線恒過定點(diǎn)(0,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的定義為:在一個(gè)數(shù)列中,從第二項(xiàng)起,如果每一項(xiàng)與它的前一項(xiàng)的差都為同一個(gè)常數(shù),那么這個(gè)數(shù)叫做等差數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公差.類比等差數(shù)列的定義給出“等和數(shù)列”的定義:_____________________________________;已知數(shù)列是等和數(shù)列,且,公和為,那么的值為____________.這個(gè)數(shù)列的前項(xiàng)和的計(jì)算公式為_____________________________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場(chǎng)有一塊農(nóng)田,如圖所示,它的邊界由圓O的一段圓弧(P為此圓弧的中點(diǎn))和線段MN構(gòu)成.已知圓O的半徑為40米,點(diǎn)P到MN的距離為50米.現(xiàn)規(guī)劃在此農(nóng)田上修建兩個(gè)溫室大棚,大棚Ⅰ內(nèi)的地塊形狀為矩形ABCD,大棚Ⅱ內(nèi)的地塊形狀為,要求均在線段上,均在圓弧上.設(shè)OC與MN所成的角為.
(1)用分別表示矩形和的面積,并確定的取值范圍;
(2)若大棚Ⅰ內(nèi)種植甲種蔬菜,大棚Ⅱ內(nèi)種植乙種蔬菜,且甲、乙兩種蔬菜的單位面積年產(chǎn)值之比為.求當(dāng)為何值時(shí),能使甲、乙兩種蔬菜的年總產(chǎn)值最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺(tái)形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對(duì)角線AC的長為10cm,容器Ⅱ的兩底面對(duì)角線EG,E1G1的長分別為14cm和62cm. 分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm. 現(xiàn)有一根玻璃棒l,其長度為40cm.(容器厚度、玻璃棒粗細(xì)均忽略不計(jì))
(1)將l放在容器Ⅰ中,l的一端置于點(diǎn)A處,另一端置于側(cè)棱CC1上,求l沒入水中部分的長度;
(2)將l放在容器Ⅱ中,l的一端置于點(diǎn)E處,另一端置于側(cè)棱GG1上,求l沒入水中部分的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)曲線E的方程為1,動(dòng)點(diǎn)A(m,n),B(﹣m,n),C(﹣m,﹣n),D(m,﹣n)在E上,對(duì)于結(jié)論:①四邊形ABCD的面積的最小值為48;②四邊形ABCD外接圓的面積的最小值為25π.下面說法正確的是( )
A.①錯(cuò),②對(duì)B.①對(duì),②錯(cuò)C.①②都錯(cuò)D.①②都對(duì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了解本市1萬名小學(xué)生的普通話水平,在全市范圍內(nèi)進(jìn)行了普通話測(cè)試,測(cè)試后對(duì)每個(gè)小學(xué)生的普通話測(cè)試成績(jī)進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)總體(這1萬名小學(xué)生普通話測(cè)試成績(jī))服從正態(tài)分布.
(1)從這1萬名小學(xué)生中任意抽取1名小學(xué)生,求這名小學(xué)生的普通話測(cè)試成績(jī)?cè)?/span>內(nèi)的概率;
(2)現(xiàn)在從總體中隨機(jī)抽取12名小學(xué)生的普通話測(cè)試成績(jī),對(duì)應(yīng)的數(shù)據(jù)如下:50,52,56,62,63,68,65,64,72,80,67,90.從這12個(gè)數(shù)據(jù)中隨機(jī)選取4個(gè),記表示大于總體平均分的個(gè)數(shù),求的方差.
參考數(shù)據(jù):若,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱的軸截面是邊長為2的正方形,點(diǎn)是圓弧上的一動(dòng)點(diǎn)(不與重合),點(diǎn)是圓弧的中點(diǎn),且點(diǎn)在平面的兩側(cè).
(1)證明:平面平面;
(2)設(shè)點(diǎn)在平面上的射影為點(diǎn),點(diǎn)分別是和的重心,當(dāng)三棱錐體積最大時(shí),回答下列問題.
(。┳C明:平面;
(ⅱ)求平面與平面所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,為邊的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且使平面平面.
(1)證明:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,左、右焦點(diǎn)分別為、,拋物線的焦點(diǎn)恰好是該橢圓的一個(gè)頂點(diǎn).
(1)求橢圓的方程;
(2)已知圓的切線(直線的斜率存在且不為零)與橢圓相交于、兩點(diǎn),那么以為直徑的圓是否經(jīng)過定點(diǎn)?如果是,求出定點(diǎn)的坐標(biāo);如果不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com