【題目】已知圓,圓,動圓與圓和圓均內切.

1)求動圓圓心的軌跡的方程;

2)過點的直線與軌跡交于,兩點,過點且垂直于的直線交軌跡于兩點,兩點,求四邊形面積的最小值.

【答案】12

【解析】

1)由兩圓位置關系可得,確定圓心的軌跡是以,為焦點,以4為長軸長的橢圓.由此可得軌跡方程;

2)分類:當直線的斜率不存在或為0時,直接求出面積,當直線的斜率存在且不為0時,不妨設其方程為:,代入曲線的方程,整理后由韋達定理得,由弦長公式求得弦長,同理得,計算面積,利用基本不等式可得最小值.

解:(1)設點坐標為,圓的半徑為.,

從而.

所以圓心的軌跡是以為焦點,以4為長軸長的橢圓.

故動圓圓心的軌跡的方程為:.

2)①當直線的斜率不存在或為0時,此時不妨設,

此時.

②當直線的斜率存在且不為0時,不妨設其方程為:,,,

聯(lián)立,

,,

此時.

同理得:.

.

當且僅當“”,即時等號成立,又.

故四邊形面積的最小值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中e是自然對數(shù)的底數(shù).

1)若,證明:

2)若時,都有,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題共14分)已知動點在角的終邊上.

(1)若,求實數(shù)的值;

(2)記,試用S表示出來.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】很多關于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學家和數(shù)學愛好者,有些猜想已經被數(shù)學家證明,如“費馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內容是:對于每一個正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點圖(如圖).

1.47

20.6

0.78

2.35

0.81

-19.3

16.2

表中,.

1)根據(jù)散點圖判斷,哪一個更適宜作燒開一壺水時間關于開關旋鈕旋轉的弧度數(shù)的回歸方程類型?(不必說明理由)

2)根據(jù)判斷結果和表中數(shù)據(jù),建立關于的回歸方程;

3)若旋轉的弧度數(shù)與單位時間內煤氣輸出量成正比,那么為多少時燒開一壺水最省煤氣?

附:對于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計分別為,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,內角A,B,C的對邊分別為a,b,c,且.

1)若,,請判斷的形狀;

2)若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知、分別為橢圓的左、右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于直線于點,線段的中垂線交于點.記點的軌跡為曲線.

1)求曲線的方程,并說明是什么曲線;

2)若直線與曲線交于兩點,則在圓上是否存在兩點,使得,?若存在,請求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)學興趣小組為了測量校園外一座不可到達建筑物的高度,采用兩次測角法,并自制了測量工具:將一個量角器放在復印機上放大4倍復印,在中心處綁上一個鉛錘,用于測量樓頂仰角(如圖);推動自行車來測距(輪子滾動一周為1.753米).該小組在操場上選定A點,此時測量視線和鉛錘線之間的夾角在量角器上度數(shù)為37°;推動自行車直線后退,輪子滾動了10卷達到B點,此時測量視線和鉛錘線之間的夾角在量角器上度數(shù)為53°.測量者站立時的眼高1.55m,根據(jù)以上數(shù)據(jù)可計算得該建筑物的高度約為___________.(精確到0.1

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解高三男生的體能達標情況,抽調了120名男生進行立定跳遠測試,根據(jù)統(tǒng)計數(shù)據(jù)得到如下的頻率分布直方圖.若立定跳遠成績落在區(qū)間的左側,則認為該學生屬“體能不達標的學生,其中分別為樣本平均數(shù)和樣本標準差,計算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).

1)若該校高三某男生的跳遠距離為,試判斷該男生是否屬于“體能不達標”的學生?

2)該校利用分層抽樣的方法從樣本區(qū)間中共抽出5人,再從中選出兩人進行某體能訓練,求選出的兩人中恰有一人跳遠距離在的概率.

查看答案和解析>>

同步練習冊答案