在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù))
(1)寫出直線l和曲線C的普通方程;
(2)設(shè)直線l和曲線C交于A,B兩點(diǎn),定點(diǎn)P(—2,—3),求|PA|·|PB|的值.

(1)(2)33.

解析試題分析:(1)將極坐標(biāo)方程按照兩角和的正弦公式展開,利用,,進(jìn)行化簡,得到普通方程,對于直線的參數(shù)方程,進(jìn)行消參,也可得到關(guān)于的普通方程;屬于基礎(chǔ)題型,易得分.
(2)把直線的參數(shù)方程代入到圓,因?yàn)辄c(diǎn)顯然在直線上,由直線標(biāo)準(zhǔn)參數(shù)方程下的幾何意義知=,利用根與系數(shù)的關(guān)系求出.主要搞清楚的幾何意義.
(1)
所以,所以,即;
直線的直角普通方程為:            5分
(2)把直線的參數(shù)方程代入到圓
, .
因?yàn)辄c(diǎn)顯然在直線上,
由直線標(biāo)準(zhǔn)參數(shù)方程下的幾何意義知= 所以.      10分
考點(diǎn):1.極坐標(biāo)方程與普通方程的互化;2.參數(shù)方程與普通方程的互化;3.參數(shù)方程下的弦長公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知直線的參數(shù)方程為(為參數(shù)),直線與拋物線交于兩點(diǎn),求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,半圓的極坐標(biāo)方程為
(1)求得參數(shù)方程;
(2)設(shè)點(diǎn)上,處的切線與直線垂直,根據(jù)(1)中你得到的參數(shù)方程,確定的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線的參數(shù)方程為為參數(shù)),曲線在點(diǎn)處的切線為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為  (a>b>0,為參數(shù)),以Ο為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2是圓心在極軸上且經(jīng)過極點(diǎn)的圓,已知曲線C1上的點(diǎn)M 對應(yīng)的參數(shù)= ,與曲線C2交于點(diǎn)D 
(1)求曲線C1,C2的方程;
(2)A(ρ1,θ),Β(ρ2,θ+)是曲線C1上的兩點(diǎn),求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 直角坐標(biāo)系xOy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的方程為,直線方程為(t為參數(shù)),直線與C的公共點(diǎn)為T. 
(1)求點(diǎn)T的極坐標(biāo);
(2)過點(diǎn)T作直線,被曲線C截得的線段長為2,求直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線的參數(shù)方程為,(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.
(1)把圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)將直線向右平移h個單位,所得直線與圓C相切,求h.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

極坐標(biāo)方程的普通方程是                 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若兩條曲線的極坐標(biāo)方程分別為ρ=1與ρ=2cos,它們相交于A、B兩點(diǎn),求線段AB的長.

查看答案和解析>>

同步練習(xí)冊答案