已知F1為橢圓的左焦點,A、B分別為橢圓的右頂點和上頂點,P為橢圓上的點,當PF1⊥F1A,PO∥AB(O為橢圓中心)時,求橢圓的離心率.
分析:求橢圓的離心率,即求
c
a
,只需求a、c的值或a、c用同一個量表示.本題沒有具體數(shù)值,因此只需把a、c用同一量表示,由PF1⊥F1A,PO∥AB易得b=c,a=
2
b.
解答:解:設(shè)橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1(-c,0),c2=a2-b2,
則P(-c,b
1-
c2
a2
),即P(-c,
b2
a
).
∵AB∥PO,∴kAB=kOP,
即-
b
a
=
-b2
ac
.∴b=c.
又∵a=
b2+c2
=
2
b,
∴e=
c
a
=
b
2
b
=
2
2
點評:本題主要考查了橢圓的性質(zhì).要充分理解橢圓性質(zhì)中的長軸、短軸、焦距、準線方程等概念及其關(guān)系.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系xOy中,已知橢圓C:
y2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左頂點為A,下頂點為B,動點P滿足
PA
AB
=m-4,(m∈R)試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學 來源:廣東省揭陽市2007年高中畢業(yè)班第一次高考模擬考試題(理科) 題型:044

如圖,在直角坐標系xOy中,已知橢圓的離心率e=,左右兩個焦分別為F1、F2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)橢圓C的左頂點為A,下頂點為B,動點P滿足,()試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省湛江二中高三(上)第一次月考數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,在直角坐標系xOy中,已知橢圓C:+=1(a>b>0)的離心率e=,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左頂點為A,下頂點為B,動點P滿足=m-4,(m∈R)試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年內(nèi)蒙古赤峰市高三統(tǒng)考數(shù)學試卷(文科)(解析版) 題型:解答題

如圖,在直角坐標系xOy中,已知橢圓C:+=1(a>b>0)的離心率e=,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左頂點為A,下頂點為B,動點P滿足=m-4,(m∈R)試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

同步練習冊答案