【題目】國(guó)內(nèi)某知名大學(xué)有男生14000人,女生10000人,該校體育學(xué)院想了解本校學(xué)生的運(yùn)動(dòng)狀況,根據(jù)性別采取分層抽樣的方法從全校學(xué)生中抽取120人,統(tǒng)計(jì)他們平均每天運(yùn)動(dòng)的時(shí)間,如下表:(平均每天運(yùn)動(dòng)的時(shí)間單位:小時(shí),該校學(xué)生平均每天運(yùn)動(dòng)的時(shí)間范圍是).

男生平均每天運(yùn)動(dòng)時(shí)間分布情況:

女生平均每天運(yùn)動(dòng)時(shí)間分布情況:

(1)請(qǐng)根據(jù)樣本估算該校男生平均每天運(yùn)動(dòng)的時(shí)間(結(jié)果精確到0.1);

(2)若規(guī)定平均每天運(yùn)動(dòng)的時(shí)間不少于2小時(shí)的學(xué)生為“運(yùn)動(dòng)達(dá)人”,低于2小時(shí)的學(xué)生為“非運(yùn)動(dòng)達(dá)人”.

①請(qǐng)根據(jù)樣本估算該!斑\(yùn)動(dòng)達(dá)人”的數(shù)量;

②請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表,并通過(guò)計(jì)算判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“是否為‘運(yùn)動(dòng)達(dá)人’與性別有關(guān)?”

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)1.5;(2)①4000;②在犯錯(cuò)誤的概率不超過(guò)0.05的前提下不能認(rèn)為“是否為‘運(yùn)動(dòng)達(dá)人’與性別有關(guān)”.

【解析】試題分析:(1)由分層抽樣計(jì)算得男生抽人,女生抽人,故,由此求得男生平均運(yùn)動(dòng)事件為小時(shí);(2)計(jì)算,故在犯錯(cuò)誤的概率不超過(guò)的前提下不能認(rèn)為是否為運(yùn)動(dòng)達(dá)人與性別有關(guān)”.

試題解析:

1)由分層抽樣得:男生抽取的人數(shù)為人,女生抽取人數(shù)為人,

,

則該校男生平均每天運(yùn)動(dòng)時(shí)間為:

故該校男生平均每天運(yùn)動(dòng)的時(shí)間約為1.5小時(shí);

2樣本中運(yùn)動(dòng)達(dá)人所占比例是,故估計(jì)該校運(yùn)動(dòng)達(dá)人人;

由表可知:

的觀(guān)測(cè)值

故在犯錯(cuò)誤的概率不超過(guò)0.05的前提下不能認(rèn)為是否為運(yùn)動(dòng)達(dá)人與性別有關(guān)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了分析在一次數(shù)學(xué)競(jìng)賽中甲、乙兩個(gè)班的數(shù)學(xué)成績(jī),分別從甲、乙兩個(gè)班中隨機(jī)抽取了10個(gè)學(xué)生的成績(jī),成績(jī)的莖葉圖如下:

)根據(jù)莖葉圖,計(jì)算甲班被抽取學(xué)生成績(jī)的平均值及方差

)若規(guī)定成績(jī)不低于90分的等級(jí)為優(yōu)秀,現(xiàn)從甲、乙兩個(gè)班級(jí)所抽取成績(jī)等級(jí)為優(yōu)秀的學(xué)生中,隨機(jī)抽取2人,求這兩個(gè)人恰好都來(lái)自甲班的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=|x﹣a|+|2x﹣a|,a<0. (Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)若不等式f(x)< 的解集非空,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: + =1(a>b>0),離心率e= ,已知點(diǎn)P(0, )到橢圓C的右焦點(diǎn)F的距離是 .設(shè)經(jīng)過(guò)點(diǎn)P且斜率存在的直線(xiàn)與橢圓C相交于A、B兩點(diǎn),線(xiàn)段AB的中垂線(xiàn)與x軸相交于一點(diǎn)Q. (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)求點(diǎn)Q的橫坐標(biāo)x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,等差數(shù)列滿(mǎn)足

1)分別求數(shù)列的通項(xiàng)公式;

2)若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題pf(x)=-x2+2ax+1-ax∈[0,1]時(shí)的最大值不超過(guò)2,命題q:正數(shù)x,y滿(mǎn)足x+2y=8,且 恒成立. 若p∨(q)為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上是增函數(shù),則的取值范圍是( 。

A. B. C. D.

【答案】C

【解析】

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)0,根據(jù)二次函數(shù)的單調(diào)性,我們可得到關(guān)于a的不等式,解不等式即可得到a的取值范圍.

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),

則當(dāng)x∈[2,+∞)時(shí),

x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)

,f(2)=4+a>0

解得﹣4<a≤4

故選:C.

【點(diǎn)睛】

本題考查的知識(shí)點(diǎn)是復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對(duì)數(shù)函數(shù)的單調(diào)區(qū)間,其中根據(jù)復(fù)合函數(shù)的單調(diào)性,構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.

型】單選題
結(jié)束】
10

【題目】圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合M={(x,y)|y=f(x)},若對(duì)于任意實(shí)數(shù)對(duì)(x1 , y1)∈M,存在(x2 , y2)∈M,使x1x2+y1y2=0成立,則稱(chēng)集合M具有∟性,給出下列四個(gè)集合: ①M(fèi)={(x,y)|y=x3﹣2x2+3}; ②M={(x,y)|y=log2(2﹣x)};
③M={(x,y)|y=2﹣2x}; ④M={(x,y)|y=1﹣sinx};
其中具有∟性的集合的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形ABCD與直角梯形ABEF,∠DAF=∠FAB=90°,點(diǎn)G為DF的中點(diǎn),AF=EF= ,P在線(xiàn)段CD上運(yùn)動(dòng).
(1)證明:BF∥平面GAC;
(2)當(dāng)P運(yùn)動(dòng)到CD的中點(diǎn)位置時(shí),PG與PB長(zhǎng)度之和最小,求二面角P﹣CE﹣B的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案