【題目】知雙曲線 ﹣ =1(a>0,b>0),A1、A2是實(shí)軸頂點(diǎn),F(xiàn)是右焦點(diǎn),B(0,b)是虛軸端點(diǎn),若在線段BF上(不含端點(diǎn))存在不同的兩點(diǎn)Pi=(1,2),使得△PiA1A2(i=1,2)構(gòu)成以A1A2為斜邊的直角三角形,則雙曲線離心率e的取值范圍是( )
A.( , )
B.( , )
C.(1, )
D.( ,+∞)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若= + ,則+的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)?倓(wù)辦公室用1000萬(wàn)元從政府購(gòu)得一塊廉價(jià)土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高0.02萬(wàn)元,已知建筑第5層樓房時(shí),每平方米建筑費(fèi)用為0.8萬(wàn)元.
(1)若學(xué)生宿舍建筑為層樓時(shí),該樓房綜合費(fèi)用為萬(wàn)元,綜合費(fèi)用是建筑費(fèi)用與購(gòu)地費(fèi)用之和),寫(xiě)出的表達(dá)式;
(2)為了使該樓房每平方米的平均綜合費(fèi)用最低,學(xué)校應(yīng)把樓層建成幾層?此時(shí)平均綜合費(fèi)用為每平方米多少萬(wàn)元?
【答案】(1);(2)學(xué)校應(yīng)把樓層建成層,此時(shí)平均綜合費(fèi)用為每平方米萬(wàn)元
【解析】
由已知求出第層樓房每平方米建筑費(fèi)用為萬(wàn)元,得到第層樓房建筑費(fèi)用,由樓房每升高一層,整層樓建筑費(fèi)用提高萬(wàn)元,然后利用等差數(shù)列前項(xiàng)和求建筑層樓時(shí)的綜合費(fèi)用;
設(shè)樓房每平方米的平均綜合費(fèi)用為,則,然后利用基本不等式求最值.
解:由建筑第5層樓房時(shí),每平方米建筑費(fèi)用為萬(wàn)元,
且樓房每升高一層,整層樓每平方米建筑費(fèi)用提高萬(wàn)元,
可得建筑第1層樓房每平方米建筑費(fèi)用為:萬(wàn)元.
建筑第1層樓房建筑費(fèi)用為:萬(wàn)元.
樓房每升高一層,整層樓建筑費(fèi)用提高:萬(wàn)元.
建筑第x層樓時(shí),該樓房綜合費(fèi)用為:.
;
設(shè)該樓房每平方米的平均綜合費(fèi)用為,
則:,
當(dāng)且僅當(dāng),即時(shí),上式等號(hào)成立.
學(xué)校應(yīng)把樓層建成10層,此時(shí)平均綜合費(fèi)用為每平方米萬(wàn)元.
【點(diǎn)睛】
本題考查簡(jiǎn)單的數(shù)學(xué)建模思想方法,訓(xùn)練了等差數(shù)列前n項(xiàng)和的求法,訓(xùn)練了利用基本不等式求最值,是中檔題.
【題型】解答題
【結(jié)束】
20
【題目】已知.
(1)求函數(shù)的最小正周期和對(duì)稱軸方程;
(2)若,求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex(x2+ax+a). (I)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若關(guān)于x的不等式f(x)≤ea在[a,+∞)上有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若執(zhí)行如圖的程序框圖,輸出S的值為4,則判斷框中應(yīng)填入的條件是( )
A.k<14?
B.k<15?
C.k<16?
D.k<17?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是奇函數(shù).
(1)求a的值和函數(shù)f(x)的定義域;
(2)解不等式f(-m2+2m-1)+f(m2+3)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+aln(x+1)(a為常數(shù))
(Ⅰ)若函數(shù)y=f(x)在區(qū)間[1,+∞)上是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)y=f(x)有兩個(gè)極值點(diǎn)x1 , x2 , 且x1<x2 , 求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A、B、C對(duì)應(yīng)的邊分別為a、b、c,已知.
(1)求cosB的值;
(2)若b=8,cos2A﹣3cos(B+C)=1,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】鷹潭市龍虎山花語(yǔ)世界位于中國(guó)第八處世界自然遺產(chǎn),世界地質(zhì)公元、國(guó)家自然文化雙遺產(chǎn)地、國(guó)家AAAAA級(jí)旅游景區(qū)﹣﹣龍虎山主景區(qū)排衙峰下,是一座獨(dú)具現(xiàn)代園藝風(fēng)格的花卉公園,園內(nèi)匯集了3000余種花卉苗木,一年四季姹紫嫣紅花香四溢.花園景觀融合法、英、意、美、日、中六大經(jīng)典園林風(fēng)格,景觀設(shè)計(jì)唯美新穎.玫瑰花園、香草花溪、臺(tái)地花海、植物迷宮、兒童樂(lè)園等景點(diǎn)錯(cuò)落有致,交相呼應(yīng)又自成一體,是世界園藝景觀的大展示.該景區(qū)自2015年春建成試運(yùn)行以來(lái),每天游人如織,郁金香、向日葵、虞美人等賞花旺季日入園人數(shù)最高達(dá)萬(wàn)人.某學(xué)校社團(tuán)為了解進(jìn)園旅客的具體情形以及采集旅客對(duì)園區(qū)的建議,特別在2017年4月1日賞花旺季對(duì)進(jìn)園游客進(jìn)行取樣調(diào)查,從當(dāng)日12000名游客中抽取100人進(jìn)行統(tǒng)計(jì)分析,結(jié)果如下:(表一)
年齡 | 頻數(shù) | 頻率 | 男 | 女 |
[0,10) | 10 | 0.1 | 5 | 5 |
[10,20) | ① | ② | ③ | ④ |
[20,30) | 25 | 0.25 | 12 | 13 |
[30,40) | 20 | 0.2 | 10 | 10 |
[40,50) | 10 | 0.1 | 6 | 4 |
[50,60) | 10 | 0.1 | 3 | 7 |
[60,70) | 5 | 0.05 | 1 | 4 |
[70,80) | 3 | 0.03 | 1 | 2 |
[80,90) | 2 | 0.02 | 0 | 2 |
合計(jì) | 100 | 1.00 | 45 | 55 |
(1)完成表格一中的空位①﹣④,并在答題卡中補(bǔ)全頻率分布直方圖,并估計(jì)2017年4月1日當(dāng)日接待游客中30歲以下人數(shù).
(2)完成表格二,并問(wèn)你能否有97.5%的把握認(rèn)為在觀花游客中“年齡達(dá)到50歲以上”與“性別”相關(guān)?
50歲以上 | 50歲以下 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:k2= ,其中n=a+b+c+d)
(3)按分層抽樣(分50歲以上與50以下兩層)抽取被調(diào)查的100位游客中的10人作為幸運(yùn)游客免費(fèi)領(lǐng)取龍虎山內(nèi)部景區(qū)門(mén)票,再?gòu)倪@10人中選取2人接受電視臺(tái)采訪,設(shè)這2人中年齡在50歲以上(含)的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com