【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的方程是,圓的參數(shù)方程是為參數(shù)),以原點為極點, 軸的非負半軸為極軸建立極坐標系.
(1)分別求直線和圓的極坐標方程;
(2)射線(其中)與圓交于兩點,與直線交于點,射線與圓交于兩點,與直線交于點,求的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】某地最近十年糧食需求量逐年上升,下表是部分統(tǒng)計數(shù)據(jù):
年份 | 2006 | 2008 | 2010 | 2012 | 2014 |
需求量(萬噸) | 236 | 246 | 257 | 276 | 286 |
(1)利用所給數(shù)據(jù)求年需求量與年份之間的回歸方程=x+;
(2)利用(1)中所求出的直線方程預測該地2018年的糧食需求量.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)用定義證明函數(shù)在上是增函數(shù);
(2)探究是否存在實數(shù),使得函數(shù)為奇函數(shù)?若存在,求出的值;若不存在,請說明理由;
(3)在(2)的條件下,解不等式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某次電影展映活動中,展映的影片有科幻片和文藝片兩種類型,統(tǒng)計一隨機抽樣調查的樣本數(shù)據(jù)顯示,100名男性觀眾中選擇科幻片的有60名,女性觀眾中有的選擇文藝片,選擇文藝片的觀眾中男性觀眾和女性觀眾一樣多.
(Ⅰ)根據(jù)以上數(shù)據(jù)完成下列列聯(lián)表
(Ⅱ)能否在犯錯誤的概率不超過0.01的前提下,認為選擇影片類型與性別有關?
附:
… | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
… | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】語文成績服從正態(tài)分布,數(shù)學成績的頻率分布直方圖如下:
(Ⅰ)如果成績大于135的為特別優(yōu)秀,這500名學生中本次考試語文、數(shù)學特別優(yōu)秀的大約各多少人?(假設數(shù)學成績在頻率分布直方圖中各段是均勻分布的)
(Ⅱ)如果語文和數(shù)學兩科都特別優(yōu)秀的共有6人,從(Ⅰ)中的這些同學中隨機抽取3人,設三人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學期望.
(附參考公式)若,則, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖(1)是一個水平放置的正三棱柱, 是棱的中點,正三棱柱的主視圖如圖(2).
(1)圖(1)中垂直于平面的平面有哪幾個(直接寫出符合要求的平面即可,不必說明或證明)
(2)求正三棱柱的體積;
(3)證明: 平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機構為了調查人們對此種交通方式的滿意度,從交通擁堵不嚴重的城市和交通擁堵嚴重的城市分別隨機調查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖(如圖所示):
若得分不低于80分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認可”,請根據(jù)此樣本完成此列聯(lián)表,并據(jù)此樣本分析是否有的把握認為城市擁堵與認可共享單車有關:
合計 | |||
認可 | |||
不認可 | |||
合計 |
附:參考數(shù)據(jù):(參考公式:)
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)),是的導函數(shù).
(Ⅰ)當時,求證;
(Ⅱ)是否存在正整數(shù),使得對一切恒成立?若存在,求出的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(A)在直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的參數(shù)方程為 (為參數(shù)), 是曲線上的動點, 為線段的中點,設點的軌跡為曲線.
(1)求的坐標方程;
(2)若射線與曲線異于極點的交點為,與曲線異于極點的交點為,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com