【題目】本題滿分15分某工廠某種航空產(chǎn)品的年固定成本為萬元,每生產(chǎn),需另投入成本為,當年產(chǎn)量不足件時,萬元).當年產(chǎn)量不小于件時,萬元).每件商品售價為萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.

(1)寫出年利潤萬元)關(guān)于年產(chǎn)量)的函數(shù)解析式;

(2)年產(chǎn)量為多少時,該廠在這一商品的生產(chǎn)中所獲利潤最大

【答案】(1);(2)年產(chǎn)量為件時,利潤最大為萬元.

【解析】

試題(1)實際應用題首先要根據(jù)題意,建立數(shù)學模型,即建立函數(shù)關(guān)系式,這里,要用分類討論的思想,建立分段函數(shù)表達式;(2)根據(jù)建立的函數(shù)關(guān)系解模,即運用數(shù)學知識求函數(shù)的最值,這里第一段,運用的是二次函數(shù)求最值,而第二段,則可運用基本不等式求最值,然后再作比較,確定最終的結(jié)果,最后要回到實際問題作答.

試題解析:解:(1)當時,;

時,,

所以.

(2)當時,

此時,當時,取得最大值萬元.

時,

此時,當時,即時,取得最大值萬元,

所以產(chǎn)量為件時,利潤最大為萬元.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(2015·湖南)某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎,求下列問題:(1)求顧客抽獎1次能獲獎的概率(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為 X ,求 X 的分布列和數(shù)學期望.
(1)(1)求顧客抽獎1次能獲獎的概率
(2)(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為 , 求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·江蘇)如圖,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1 , 設AB1的中點為D,B1CBC1=E.求證:

(1)DE∥平面AA1C1C
(2)BC1⊥AB1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓(a>b>0)過點(0,),且離心率為。

(Ⅰ)求橢圓E的方程;
(II)設直線x my 1,(m R)交橢圓E與A,B兩點,判斷點G(-,0)與以線段AB為直徑的圓的位置關(guān)系,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知平面,點分別是的中點。

(1)求證:平面
(2)求證:平面平面
(3)求直線與平面所成角的大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·湖北)某廠用鮮牛奶在某臺設備上生產(chǎn)兩種奶制品.生產(chǎn)1噸A產(chǎn)品需鮮牛奶2噸,使用設備1小時,獲利1000元;生產(chǎn)1噸B產(chǎn)品需鮮牛奶1.5噸,使用設備1.5小時,獲利1200元.要求每天B產(chǎn)品的產(chǎn)量不超過A產(chǎn)品產(chǎn)量的2倍,設備每天生產(chǎn)兩種產(chǎn)品時間之和不超過12小時. 假定每天可獲取的鮮牛奶數(shù)量W(單位:噸)是一個隨機變量,其分布列為

(Ⅰ)求Z的分布列和均值;該廠每天根據(jù)獲取的鮮牛奶數(shù)量安排生產(chǎn),使其獲利最大,因此每天的最大獲利Z(單位:元)是一個隨機變量.
(Ⅱ) 若每天可獲取的鮮牛奶數(shù)量相互獨立,求3天中至少有1天的最大獲利超過10000元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)對定義域內(nèi)的每一個值在其定義域內(nèi)都存在唯一的使成立,則稱該函數(shù)為“依賴函數(shù)”.

(1)判斷函數(shù)是否為“依賴函數(shù)”,并說明理由;

(2)若函數(shù)在定義域上為“依賴函數(shù)”,求實數(shù)乘積的取值范圍;

(3)已知函數(shù)在定義域上為“依賴函數(shù)”,若存在實數(shù)使得對任意的有不等式都成立,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),.
(1)(I)求的單調(diào)區(qū)間和極值;
(2)(II)證明:若存在零點,則的區(qū)間(1,]上僅有一個零點。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】
設函數(shù)
①若,則的最小值為
②若恰有2個零點,則實數(shù)的取值范圍是 .

查看答案和解析>>

同步練習冊答案