【題目】已知函數(shù)在上是增函數(shù),且.
(1)求a的取值范圍;
(2)求函數(shù)在上的最大值.
(3)已知,證明.
【答案】(1);(2)0;(3)見解析.
【解析】試題分析:(1)的導數(shù)為,由函數(shù)在上是增函數(shù),可求的取值范圍;(2)討論函數(shù)的單調性,可得到函數(shù)在[0,+∞)上的最大值;(3)結合函數(shù)在(1,+∞)上是增函數(shù),可得,化簡即,又因為,則由(2)的性質可得
試題解析:(1)的導數(shù)為,
因為函數(shù)在上是增函數(shù),
所以在上恒成立,
即在上恒成立,
所以只需,
又因為,所以
(2)因為x∈[0,+∞),所以
所以在[0,+∞)上單調遞減,
所以在[0,+∞)上的最大值為.
(3)證明:因為a>1,b>0,所以,
由(1)知在(1,+∞)上是增函數(shù),所以,
即,化簡得,
又因為,
由第(2)問可知,
即,
綜上得證.
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)市場調查,新街口某新開業(yè)的商場在過去一個月內(以30天計),顧客人數(shù)(千人)與時間(天)的函數(shù)關系近似滿足(),人均消費(元)與時間(天)的函數(shù)關系近似滿足
(1)求該商場的日收益(千元)與時間(天)(, )的函數(shù)關系式;
(2)求該商場日收益的最小值(千元).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校學生營養(yǎng)餐由A和B兩家配餐公司配送. 學校為了解學生對這兩家配餐公司的滿意度,采用問卷的形式,隨機抽取了40名學生對兩家公司分別評分. 根據(jù)收集的80份問卷的評分,得到A公司滿意度評分的頻率分布直方圖和B公司滿意度評分的頻數(shù)分布表:
(Ⅰ)根據(jù)A公司的頻率分布直方圖,估計該公司滿意度評分的中位數(shù);
(Ⅱ)從滿意度高于90分的問卷中隨機抽取兩份,求這兩份問卷都是給A公司評分的概率;
(Ⅲ)請從統(tǒng)計角度,對A、B兩家公司做出評價.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為函數(shù)圖象上一點, 為坐標原點,記直線的斜率.
(1)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(2)當時,不等式恒成立,求實數(shù)的取值范圍;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2015年8月12日天津發(fā)生;分卮蟊ㄊ鹿,造成重大人員和經(jīng)濟損失.某港口組織消防人員對該港口的公司的集裝箱進行安全抽檢,已知消防安全等級共分為四個等級(一級為優(yōu),二級為良,三級為中等,四級為差),該港口消防安全等級的統(tǒng)計結果如下表所示:
現(xiàn)從該港口隨機抽取了家公司,其中消防安全等級為三級的恰有20家.
(Ⅰ)求的值;
(Ⅱ)按消防安全等級利用分層抽樣的方法從這家公司中抽取10家,除去消防安全等級為一級和四級的公司后,再從剩余公司中任意抽取2家,求抽取的這2家公司的消防安全等級都是二級的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點為曲線上任意一點,且到定點的距離比到軸的距離多1.
(1)求曲線的方程;
(2)點為曲線上一點,過點分別作傾斜角互補的直線, 與曲線分別交于, 兩點,過點且與垂直的直線與曲線交于, 兩點,若,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的月固定成本為10(萬元),每生產(chǎn)件,需另投入成本為(萬元).當月產(chǎn)量不足30件時, (萬元);當月產(chǎn)量不低于30件時, (萬元).因設備問題,該廠月生產(chǎn)量不超過50件.現(xiàn)已知此商品每件售價為5萬元,且該廠每個月生產(chǎn)的商品都能當月全部銷售完.
(1)寫出月利潤(萬元)關于月產(chǎn)量(件)的函數(shù)解析式;
(2)當月產(chǎn)量為多少件時,該廠所獲月利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某保險公司利用簡單隨機抽樣方法,對投保車輛進行抽樣,樣本車輛中每輛車的賠付結果統(tǒng)計如下:
賠付金額(元) | 0 | 1 000 | 2 000 | 3 000 | 4 000 |
車輛數(shù)(輛) | 500 | 130 | 100 | 150 | 120 |
(1)若每輛車的投保金額均為2800元,估計賠付金額大于投保金額的概率.
(2)在樣本車輛中,車主是新司機的占10%,在賠付金額為4000元的樣本車輛中,車主是新司機的占20%,估計在已投保車輛中,新司機獲賠金額為4000元的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com