如圖,AB是圓O的直徑,D,E為圓上位于AB異側(cè)的兩點,連接BD并延長至點C,使BD=DC,連接AC,AE,DE.

求證:∠E=∠C.

見解析

解析證明 連接OD,因為BD=DC,O為AB的中點,

所以O(shè)D∥AC,于是∠ODB=∠C.
因為OB=OD,所以∠ODB=∠B于是∠B=∠C.
因為點A,E,B,D都在圓O上,且D,E為圓O上位于AB異側(cè)的兩點,所以∠E和∠B為同弧所對的圓周角,
故∠E=∠B.所以∠E=∠C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是圓的直徑,延長線上的一點,是圓的割線,過點的垂線,交直線于點,交直線于點,過點作圓的切線,切點為.

(1)求證:四點共圓;(2)若,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,CD為Rt△ABC斜邊AB邊上的中線,CE⊥CD,CE=,連接DE交BC于點F,AC=4,BC=3.求證:

(1)△ABC∽△EDC;
(2)DF=EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中點,ED的延長線與CB的延長線交于點F.

求證:FD2=FB·FC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

試說明矩形的四個頂點在以對角線的交點為圓心的同一個圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知AD是△ABC的內(nèi)角平分線,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,梯形ABCD內(nèi)接于⊙O,ADBC,過點C作⊙O的切線,交BD的延長線于點P,交AD的延長線于點E.

(1)求證:AB2DE·BC;
(2)若BD=9,AB=6,BC=9,求切線PC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,為圓的切線,為切點,,的角平分線與和圓分別交于點

(1)求證   (2)求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知切⊙于點E,割線PBA交⊙于A、B兩點,∠APE的平分線和AE、BE分別交于點C、D.

求證:(Ⅰ);   (Ⅱ).

查看答案和解析>>

同步練習(xí)冊答案