橢圓C:(a>b>0)的左、右焦點分別為F1(-1,0)、F2(1,0),O是坐標原點,C的右頂點和上頂點分別為A、B,且|AB|=3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線x=ky+1與C交于相異兩點M、N,且,求k.
【答案】分析:(Ⅰ)利用橢圓的焦點坐標,及|AB|=3,建立方程組,即可求得橢圓C的方程;
(Ⅱ)直線x=ky+1代入橢圓方程,消去x可得一元二次方程,利用韋達定理及向量條件,即可求得結論.
解答:解:(Ⅰ)由題意,,∴a2=5,b2=4
∴橢圓C的方程為;
(Ⅱ)直線x=ky+1代入橢圓方程,消去x可得(5k2+4)y2+8ky-16=0
設M(x1,y1),N(x2,y2),則y1+y2=,y1y2=



∴k2=1,從而k=±1
點評:本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查向量知識,考查韋達定理的運用,聯(lián)立方程,正確運用韋達定理是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本題滿分12分) 過橢圓C: + = 1(a>b>0)的一個焦點且垂直于x軸的直線與橢圓C交于點(,1).(1)求橢圓C的方程;(2)設過點P(4,1)的動直線與橢圓C相交于兩個不同點A、B,與直線2x+y-2=0交于點Q,若→AP=λ→PB,→AQ =μ→QB,求λ+μ的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

       已知橢圓C: +=1(a>b>0)的離心率e=,且橢圓經(jīng)過點N(2,-3).

   (1)求橢圓C的方程;

   (2)求橢圓以M(-1,2)為中點的弦所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年四川省成都市石室中學高考數(shù)學三模試卷(理科)(解析版) 題型:解答題

已知橢圓C:(a>b>0)的長軸長是短軸長的兩倍,焦距為
(1)求橢圓C的標準方程;
(2)設不過原點O的直線l與橢圓C交于兩點M、N,且直線OM、MN、ON的斜率依次成等比數(shù)列,求△OMN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2008年上海市嘉定區(qū)高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:(a>b>0).
(1)設橢圓的半焦距c=1,且a2,b2,c2成等差數(shù)列,求橢圓C的方程;
(2)對(1)中的橢圓C,直線y=x+1與C交于P、Q兩點,求|PQ|的值;
(3)設B為橢圓C:(a>b>0)的短軸的一個端點,F(xiàn)為橢圓C的一個焦點,O為坐標原點,記∠BFO=θ.當橢圓C同時滿足下列兩個條件:①;②a2+b2=2a2b2.求橢圓長軸的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省高三第七次月考理科數(shù)學 題型:解答題

已知橢圓C:+=1(a>b>0),直線y=x+與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切,F(xiàn)1,F(xiàn)2為其左、右焦點,P為橢圓C上任一點,△F1PF2的重心為G,內心為I,且IG∥F1F2。⑴求橢圓C的方程。⑵若直線L:y=kx+m(k≠0)與橢圓C交于不同兩點A,B且線段AB的垂直平分線過定點C(,0)求實數(shù)k的取值范圍。

 

 

查看答案和解析>>

同步練習冊答案