已知函數(shù)為自然對數(shù)的底數(shù)).
(1)求曲線處的切線方程;
(2)若的一個極值點(diǎn),且點(diǎn),滿足條件:.
(ⅰ)求的值;
(ⅱ)求證:點(diǎn),是三個不同的點(diǎn),且構(gòu)成直角三角形.

(1);(2)(。;(ⅱ)參考解析

解析試題分析:(1)由函數(shù),求函數(shù)的導(dǎo)數(shù),并計算即所求切線方程的斜率,又過點(diǎn).即可求出結(jié)論.
(2)(。┯桑1)得到的函數(shù)的導(dǎo)數(shù),即可求出函數(shù)的單調(diào)區(qū)間,從而得到函數(shù)的極值點(diǎn),即得到的值.
(ⅱ)需求證:點(diǎn),,是三個不同的點(diǎn),通過分類每兩個點(diǎn)重合,利用已知條件即方程的根的個數(shù)來判定即可得到三點(diǎn)是不同點(diǎn)的點(diǎn).通過向量的數(shù)量積可得到三點(diǎn)可構(gòu)成直角三角形.
(1),                                    2分
,又,                                  4分
所以曲線處的切線方程為,
.                                               5分
(2)(。⿲τ,定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e0/eb/e0eebd9846afa22ed219f4126e1c92bc.png" style="vertical-align:middle;" />.
當(dāng)時,,,∴;
當(dāng)時,;
當(dāng)時,,,∴,                 8分
所以存在唯一的極值點(diǎn),∴,則點(diǎn).                9分
(ⅱ)若,則,
與條件不符,從而得
同理可得.                                      10分
,由,此方程無實(shí)數(shù)解,
從而得.                                       11分
由上可得點(diǎn),兩兩不重合.



從而

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)函數(shù)處取得極值1.
(1)求實(shí)數(shù)b,c的值;
(2)求在區(qū)間[-2,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)是否存在實(shí)數(shù),當(dāng)是自然常數(shù))時,函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由;
(3)當(dāng)時,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)若曲線在點(diǎn)處與直線相切,求a,b的值;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).若曲線在點(diǎn)處的切線與直線垂直,
(1)求實(shí)數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點(diǎn).已知a,b是實(shí)數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個極值點(diǎn).
(1)求a和b的值;
(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=f(x)+2,求g(x)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2013•天津)已知函數(shù)f(x)=x2lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:對任意的t>0,存在唯一的s,使t=f(s).
(3)設(shè)(2)中所確定的s關(guān)于t的函數(shù)為s=g(t),證明:當(dāng)t>e2時,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)試求函數(shù)的遞減區(qū)間;
(2)試求函數(shù)在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某風(fēng)景區(qū)在一個直徑AB為100米的半圓形花園中設(shè)計一條觀光線路(如圖所示).在點(diǎn)A與圓
弧上的一點(diǎn)C之間設(shè)計為直線段小路,在路的兩側(cè)邊緣種植綠化帶;從點(diǎn)C到點(diǎn)B設(shè)計為沿弧的弧形小路,在路的一側(cè)邊緣種植綠化帶.(注:小路及綠化帶的寬度忽略不計)
(1)設(shè)(弧度),將綠化帶總長度表示為的函數(shù)
(2)試確定的值,使得綠化帶總長度最大.

查看答案和解析>>

同步練習(xí)冊答案