(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

設(shè),對(duì)于項(xiàng)數(shù)為的有窮數(shù)列,令中最大值,稱(chēng)數(shù)列的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7.

考查自然數(shù)的所有排列,將每種排列都視為一個(gè)有窮數(shù)列

(1)若,寫(xiě)出創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列;

(2)是否存在數(shù)列的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的創(chuàng)新數(shù)列;若不存在,請(qǐng)說(shuō)明理由.

(3)是否存在數(shù)列,使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出滿足所有條件的數(shù)列的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.

 

【答案】

解:(1)由題意,創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列有兩個(gè),即3,4,1,2和

3,4,2,1.              ……………(每寫(xiě)出一個(gè)給2分,多寫(xiě)不得分)4分

(2)存在數(shù)列的創(chuàng)新數(shù)列為等比數(shù)列.……………………………………5分

設(shè)數(shù)列的創(chuàng)新數(shù)列為

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052413013060938134/SYS201205241304093437507381_DA.files/image003.png">為前個(gè)自然數(shù)中最大的一個(gè),所以.   ……………………6分

為等比數(shù)列,設(shè)公比為,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052413013060938134/SYS201205241304093437507381_DA.files/image007.png">,所以.…7分

當(dāng)時(shí),為常數(shù)列滿足條件,即為數(shù)列

(或?qū)懲?xiàng)公式);    ……………………………………9分

當(dāng)時(shí),為增數(shù)列,符合條件的數(shù)列只能是,又不滿足等比數(shù)列.綜上符合條件的創(chuàng)新數(shù)列只有一個(gè).              ……………………10分

(3)存在數(shù)列,使它的創(chuàng)新數(shù)列為等差數(shù)列,     ……………………11分

設(shè)數(shù)列的創(chuàng)新數(shù)列為,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052413013060938134/SYS201205241304093437507381_DA.files/image003.png">為前個(gè)自然數(shù)中最大的一個(gè),所以

為等差數(shù)列,設(shè)公差為,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052413013060938134/SYS201205241304093437507381_DA.files/image007.png">,所以.且  ……………………12分

當(dāng)時(shí),為常數(shù)列滿足條件,即為數(shù)列(或?qū)懲?xiàng)公式),

此時(shí)數(shù)列是首項(xiàng)為的任意一個(gè)排列,共有個(gè)數(shù)列;      ……………14分

當(dāng)時(shí),符合條件的數(shù)列只能是,此時(shí)數(shù)列,有1個(gè);                                                     ……………………15分

當(dāng)時(shí), 又

這與矛盾,所以此時(shí)不存在。    …………17分

綜上滿足條件的數(shù)列的個(gè)數(shù)為個(gè)(或回答個(gè)).  …………18分

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分18分,第(1)小題6分,第(2)小題6分,第(3)小題6分)

若數(shù)列滿足:是常數(shù)),則稱(chēng)數(shù)列為二階線性遞推數(shù)列,且定義方程為數(shù)列的特征方程,方程的根稱(chēng)為特征根; 數(shù)列的通項(xiàng)公式均可用特征根求得:

①若方程有兩相異實(shí)根,則數(shù)列通項(xiàng)可以寫(xiě)成,(其中是待定常數(shù));

②若方程有兩相同實(shí)根,則數(shù)列通項(xiàng)可以寫(xiě)成,(其中是待定常數(shù));

再利用可求得,進(jìn)而求得

根據(jù)上述結(jié)論求下列問(wèn)題:

(1)當(dāng),)時(shí),求數(shù)列的通項(xiàng)公式;

(2)當(dāng))時(shí),求數(shù)列的通項(xiàng)公式;

(3)當(dāng),)時(shí),記,若能被數(shù)整除,求所有滿足條件的正整數(shù)的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆上海市盧灣區(qū)高三上學(xué)期期末數(shù)學(xué)理卷 題型:解答題

(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分8分,第3小題滿分6分.
已知負(fù)數(shù)和正數(shù),且對(duì)任意的正整數(shù)n,當(dāng)≥0時(shí), 有[, ]=
[, ];當(dāng)<0時(shí), 有[, ]= [, ].
(1)求證數(shù)列{}是等比數(shù)列;
(2)若,求證
(3)是否存在,使得數(shù)列為常數(shù)數(shù)列?請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省濟(jì)寧市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分18分)已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸正半軸上,點(diǎn)到其準(zhǔn)線的距離等于5.

(Ⅰ)求拋物線C的方程;

(Ⅱ)如圖,過(guò)拋物線C的焦點(diǎn)的直線從左到右依次與拋物線C及圓交于A、C、D、B四點(diǎn),試證明為定值;

(Ⅲ)過(guò)A、B分別作拋物C的切線交于點(diǎn)M,求面積之和的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海市普陀區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題

(本題滿分18分,其中第1小題6分,第2小題6分,第3小題6分)
已知數(shù)列的首項(xiàng)為1,前項(xiàng)和為,且滿足.?dāng)?shù)列滿足.
(1) 求數(shù)列的通項(xiàng)公式;
(2) 當(dāng)時(shí),試比較的大小,并說(shuō)明理由;
(3) 試判斷:當(dāng)時(shí),向量是否可能恰為直線的方向向量?請(qǐng)說(shuō)明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案