已知H是球O的直徑AB上一點(diǎn),AH∶HB=1∶2,AB⊥平面α,H為垂足,α截球O所得截面的面積為π,則球O的表面積為    .
如圖,設(shè)截面小圓的半徑為r,球的半徑為R,因?yàn)锳H∶HB=1∶2,所以O(shè)H=R.由勾股定理,有R2=r2+OH2,

又由題意得πr2=π,則r=1,故R2=1+,即R2=.由球的表面積公式,得S=4πR2=.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如右圖,在底面為平行四邊形的四棱柱中,底面,
,,

(1)求證:平面平面;
(2)若,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知四棱錐PABCD的正視圖是一個(gè)底邊長(zhǎng)為4、腰長(zhǎng)為3的等腰三角形,如圖分別是四棱錐PABCD的側(cè)視圖和俯視圖.

(1)求證:ADPC;
(2)求四棱錐PABCD的側(cè)面PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在邊長(zhǎng)為a的正三角形鐵皮的三個(gè)角切去三個(gè)全等的四邊形,再把它的邊沿虛線折起(如圖),做成一個(gè)無(wú)蓋的正三角形底鐵皮箱,當(dāng)箱底邊長(zhǎng)為多少時(shí),箱子容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,一個(gè)底面半徑為的圓柱形量杯中裝有適量的水若放入一個(gè)半徑為的實(shí)心鐵球,水面高度恰好升高,則____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,半徑為4的球O中有一內(nèi)接圓柱,當(dāng)圓柱的側(cè)面積最大時(shí),球的表面積與該圓柱的側(cè)面積之差是    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

我國(guó)古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測(cè)雨”題:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是  寸.
(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在半徑為R的半球內(nèi)有一內(nèi)接圓柱,則這個(gè)圓柱的體積的最大值是(  )
A.πR3B.πR3
C.πR3D.πR3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

三棱錐的頂點(diǎn)為P,PA,PB,PC為三條棱,且PA,PB,PC兩兩垂直,又PA=2,PB=3,PC=4,則三棱錐P-ABC的體積是                      .

查看答案和解析>>

同步練習(xí)冊(cè)答案