已知函數(shù)f(x)=
4-x2(x>0)
2(x=0)
1-2x(x<0)

(1)求f(a2+1)(a∈R),f(f(3))的值;
(2)當(dāng)-4≤x<3時(shí),求f(x)取值的集合.
分析:(1)已知分段函數(shù)解析式,注意a2+1>1,代入f(x)=4-x2,同理求出f(3),再把f(3)看為一個(gè)整體,再進(jìn)行代入求解;
(2)當(dāng)-4≤x<3時(shí),把x=0作為分界點(diǎn),利用分類討論的思想進(jìn)行求解;
解答:解:(1)函數(shù)f(x)=
4-x2(x>0)
2(x=0)
1-2x(x<0)

∵a2+1>0
∴f(a2+1)=4-(a2+1)2=-a4-2a2+3,
f(3)=4-32=-5,
∴f(f(3))=f(-5)=1-2×(-5)=11;
(2)當(dāng)-4≤x<0時(shí),f(x)為減函數(shù),則
f(x)=4-x2∈[-12,4),
當(dāng)x=0時(shí),f(x)=2,
當(dāng)0<x<3時(shí),f(x)=1-2x∈[-5,1],
f(x)取值的集合為{x|-12≤x<4};
點(diǎn)評(píng):此題主要考查分段函數(shù)的性質(zhì)及其應(yīng)用,解題的過程中用到了分類討論的思想,是一道基礎(chǔ)題;
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4(a-3)x+a+
1
2
(x<0)
ax,(x≥0)
,若函數(shù)f(x)的圖象經(jīng)過點(diǎn)(3,
1
8
),則a=
 
;若函數(shù)f(x)滿足對(duì)任意x1≠x2,
f(x1)-f(x2)
x1-x2
<0
都有成立,那么實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4-x2
|x-3|-3
,則它是(  )
A、奇函數(shù)B、偶函數(shù)
C、既奇又偶函數(shù)D、非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4•2x+2
2x+1
+x•cosx (-1≤x≤1)
,且f(x)存在最大值M和最小值N,則M、N一定滿足(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4-x2(x>0)
2(x=0)
1-2x(x<0)
,
(1)畫出函數(shù)f(x)圖象;
(2)求f(a2+1)(a∈R),f(f(3))的值;
(3)當(dāng)-4≤x<3時(shí),求f(x)取值的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案