【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且a2+b2+ ab=c2
(1)求C;
(2)設(shè)cosAcosB= = ,求tanα的值.

【答案】
(1)解:∵a2+b2+ ab=c2,即a2+b2﹣c2=﹣ ab,

∴由余弦定理得:cosC= = =﹣ ,

又C為三角形的內(nèi)角,

則C=


(2)解:由題意 = =

∴(cosA﹣tanαsinA)(cosB﹣tanαsinB)= ,

即tan2αsinAsinB﹣tanα(sinAcosB+cosAsinB)+cosAcosB=tan2αsinAsinB﹣tanαsin(A+B)+cosAcosB=

∵C= ,A+B= ,cosAcosB= ,

∴sin(A+B)= ,cos(A+B)=cosAcosB﹣sinAsinB= ﹣sinAsinB= ,即sinAsinB= ,

tan2α﹣ tanα+ = ,即tan2α﹣5tanα+4=0,

解得:tanα=1或tanα=4


【解析】(1)利用余弦定理表示出cosC,將已知等式變形后代入求出cosC的值,由C為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出C的度數(shù);(2)已知第二個(gè)等式分子兩項(xiàng)利用兩角和與差的余弦函數(shù)公式化簡(jiǎn),再利用同角三角函數(shù)間的基本關(guān)系弦化切,利用多項(xiàng)式乘多項(xiàng)式法則計(jì)算,由A+B的度數(shù)求出sin(A+B)的值,進(jìn)而求出cos(A+B)的值,利用兩角和與差的余弦函數(shù)公式化簡(jiǎn)cos(A+B),將cosAcosB的值代入求出sinAsinB的值,將各自的值代入得到tanα的方程,求出方程的解即可得到tanα的值.
【考點(diǎn)精析】掌握兩角和與差的余弦公式和余弦定理的定義是解答本題的根本,需要知道兩角和與差的余弦公式:;余弦定理:;;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)采取分層抽樣的方法從應(yīng)屆高三學(xué)生中按照性別抽出20名學(xué)生作為樣本,其選報(bào)文科理科的情況如下表所示.

文科

2

5

理科

10

3

(1)若在該樣本中從報(bào)考文科的女學(xué)生A.B.C.D.E中隨機(jī)地選出2人召開座談會(huì),試求2人中有A的概率;

(2)用假設(shè)檢驗(yàn)的方法分析有多大的把握認(rèn)為該中學(xué)的高三學(xué)生選報(bào)文理科與性別有關(guān)?

參考公式和數(shù)據(jù):.

P()

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.07

2.71

3.84

5.02

6.64

7.88

10.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=1+(1+a)x﹣x2﹣x3 , 其中a>0.
(1)討論f(x)在其定義域上的單調(diào)性;
(2)當(dāng)x∈[0,1]時(shí),求f(x)取得最大值和最小值時(shí)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角的三條對(duì)邊分別為,.

(1)求

(2)點(diǎn)在邊上,,,,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=a(x﹣5)2+6lnx,其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(其中)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為

(Ⅰ)求的解析式;

(Ⅱ)當(dāng),求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了增強(qiáng)消防安全意識(shí),某中學(xué)做了一次消防知識(shí)講座,從男生中隨機(jī)抽取了50人,從女生中隨機(jī)抽取了70人參加消防知識(shí)測(cè)試,統(tǒng)計(jì)數(shù)據(jù)得到如下的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計(jì)

男生

15

35

50

女生

30

40

70

總計(jì)

45

75

120

(1)試判斷能否有90%的把握認(rèn)為消防知識(shí)的測(cè)試成績(jī)優(yōu)秀與否與性別有關(guān);

(2)為了宣傳消防安全知識(shí),從該校測(cè)試成績(jī)獲得優(yōu)秀的同學(xué)中采用分層抽樣的方法,隨機(jī)選出6名組成宣傳小組.現(xiàn)從這6人中隨機(jī)抽取2名到校外宣傳,求到校外宣傳的同學(xué)中至少有1名是男生的概率。

附:

P(K2k0)

0.25

0.15

0.10

0.05

0.025

0.010

k0

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)口袋中有個(gè)白球和個(gè)紅球(,且),每次從袋中摸出兩個(gè)球(每次摸球后把這兩個(gè)球放回袋中),若摸出的兩個(gè)球顏色相同為中獎(jiǎng),否則為不中獎(jiǎng).

(1)試用含的代數(shù)式表示一次摸球中獎(jiǎng)的概率;

(2)若,求三次摸球恰有一次中獎(jiǎng)的概率;

(3)記三次摸球恰有一次中獎(jiǎng)的概率為,當(dāng)為何值時(shí),取最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從1,3,5,7,9這五個(gè)數(shù)中,每次取出兩個(gè)不同的數(shù)分別記為a,b,共可得到lga﹣lgb的不同值的個(gè)數(shù)是(
A.9
B.10
C.18
D.20

查看答案和解析>>

同步練習(xí)冊(cè)答案