某市為了了解今年高中畢業(yè)生的體能狀況,從本市某校高中畢業(yè)班中抽取一個班進行鉛球測試,成績在8.0米(精確到0.1米)以上的為合格.把所得數(shù)據(jù)進行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.

(Ⅰ)求這次鉛球測試成績合格的人數(shù);
(Ⅱ)用此次測試結果估計全市畢業(yè)生的情況.若從今年的高中畢業(yè)生中隨機抽取兩名,記表示兩人中成績不合格的人數(shù),求的分布列及數(shù)學期望;
(Ⅲ)經(jīng)過多次測試后,甲成績在8~10米之間,乙成績在9.5~10.5米之間,現(xiàn)甲、乙各投擲一次,求甲比乙投擲遠的概率.

(Ⅰ)這次鉛球測試成績合格的人數(shù)為50;
(Ⅱ)的分布列為

X
0
1
2
P



數(shù)學期望
(Ⅲ)甲比乙投擲遠的概率

解析試題分析:(Ⅰ)由已知條件先求第6小組的頻率,再求此次測試總人數(shù),而第4、5、6組成績均合格,從而可得這次鉛球測試成績合格的人數(shù);(Ⅱ)首先寫出的可能取值:0,1,2,算出此次測試中成績不合格的概率:,∴,利用二項分布可求出,,.從而得的分布列,進而求得的數(shù)學期望值;
(Ⅲ)設甲、乙各投擲一次的成績分別為米,列出基本事件滿足的區(qū)域:,事件“甲比乙投擲遠的概率”滿足的區(qū)域為,畫出圖形,利用幾何概型公式來求甲比乙投擲遠的概率.
試題解析:(Ⅰ)第6小組的頻率為1-(0.04+0.10+0.14+0.28+0.30)=0.14,
∴此次測試總人數(shù)為(人).                         (2分)
∴第4、5、6組成績均合格,人數(shù)為(0.28+0.30+0.14)×50=36(人)(4分)
(Ⅱ)的可能取值為0,1,2,此次測試中成績不合格的概率為,∴.(5分,,.。7分)
所求的的分布列為

X
0
1
2
P



                                          (9分)
(Ⅲ)設甲、乙各投擲一次的成績分別為、米,則基本事件滿足的區(qū)域為,(10分)
事件“甲比乙投擲遠的概率”滿足的區(qū)域為,如圖所示:

∴由幾何概型.   (13分).
考點:1.頻率分布直方圖;2.離散型隨機變量的分布列和數(shù)學期望;3.利用幾何概型求概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某校從高一年級學生中隨機抽取40名學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100],得到如圖所示的頻率分布直方圖.

(1)求圖中實數(shù)a的值;
(2)若該校高一年級共有學生640人,試估計該校高一年級期中考試數(shù)學成績不低于60分的人數(shù);
(3)若從數(shù)學成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學生中隨機選取2名學生,求這2名學生的數(shù)學成績之差的絕對值不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某中學舉行了一次“環(huán)保知識競賽”活動.為了了解本次競賽學生成績情況,從中抽取了部分學生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進行統(tǒng)計.按照,,的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).

頻率分布直方圖                           莖葉圖
(Ⅰ)求樣本容量n和頻率分布直方圖中x、y的值;
(Ⅱ)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取2名同學到市政廣場參加環(huán)保知識宣傳的志愿者活動,求所抽取的2名同學來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

隨機抽取某中學甲、乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖.

(1)計算甲班的樣本方差;
(2)現(xiàn)從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某次有1000人參加的數(shù)學摸底考試,其成績的頻率分布直方圖如圖所示,規(guī)定85分及其以上為優(yōu)秀.

(1)下表是這次考試成績的頻數(shù)分布表,求正整數(shù)a, b的值;

區(qū)間
 
[75,80)
 
[80,85)
 
[85,90)
 
[90,95)
 
[95,100]
 
人數(shù)
 
50
 
a
 
350
 
300
 
b
 
(2)現(xiàn)在要用分層抽樣的方法從這1000人中抽取40人的成績進行分析,求其中成績?yōu)閮?yōu)秀的學生人數(shù);
(3)在(2)中抽取的40名學生中,要隨機選取2名學生參 加座談會,記“其中成績?yōu)閮?yōu)秀的人數(shù)”為X,求X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中華人民共和國《道路交通安全法》中將飲酒后違法駕駛機動車的行為分成兩個檔次:“酒后駕車”和“醉酒駕車”,其檢測標準是駕駛人員血液中的酒精含量(簡稱血酒含量,單位是毫克/毫升),當時,為“酒后駕車”;當時,為“醉酒駕車”.某市公安局交通管理部門于月的某天晚上點至點在該市區(qū)解放路某處設點進行一次攔查行動,共依法查出了名飲酒后違法駕駛機動車者,如圖為這名駕駛員抽血檢測后所得結果畫出的頻率分布直方圖(其中的人數(shù)計入人數(shù)之內(nèi)).

(Ⅰ)求此次攔查中“醉酒駕車”的人數(shù);
(Ⅱ)從違法駕車的人中按“酒后駕車”和“醉酒駕車”利用分層抽樣抽取人做樣本進行研究,再從抽取的人中任取人,求人中其中人為“酒后駕車”另人為“醉酒駕車”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在每年的春節(jié)后,某市政府都會發(fā)動公務員參與到植樹活動中去.為保證樹苗的質量,該市林管部門在植樹前,都會在植樹前對樹苗進行檢測.現(xiàn)從甲乙兩種樹苗中各抽測了10株樹苗的高度,量出樹苗的高度如下(單位:厘米):
甲:
乙:
(1)根據(jù)抽測結果,完成答題卷中的莖葉圖,并根據(jù)你填寫的莖葉圖,對甲、乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結論;

(2)設抽測的10株甲種樹苗高度平均值為,將這10株樹苗的高度依次輸入按程序框圖進行的運算,問輸出的大小為多少?并說明的統(tǒng)計學意義.
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某同學在生物研究性學習中,對春季晝夜溫差大小與黃豆種子發(fā)芽多少之間的關系進行研究,于是他在4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日 期
4月1日
4月7日
4月15日
4月21日
4月30日
溫差
10
11
13
12
8
發(fā)芽數(shù)
23
25
30
26
16
(Ⅰ)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請根據(jù)這5天中的另三天的數(shù)據(jù),求出關于的線性回歸方程;
(Ⅱ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(Ⅰ)中所得的線性回歸方程是否可靠?
(參考公式:,
(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2013年1月份,我國北方部分城市出現(xiàn)霧霾天氣,形成霧霾天氣主要原因與有關. 是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物. 日均值越小,空氣質量越好. 2012年2月29日,國家環(huán)保部發(fā)布的《環(huán)境空氣質量標準》見下表:

日均值k(微克)
空氣質量等級

一級

二級

超標

某環(huán)保部門為了了解甲、乙兩市的空氣質量狀況,在過去某月的30天中分別隨機抽取了甲、乙兩市6天的日均值作為樣本,樣本數(shù)據(jù)莖葉圖如上右圖所示(十位為莖,個位為葉). (Ⅰ)分別求出甲、乙兩市日均值的樣本平均數(shù),并由此判斷哪個市的空氣質量較好;
(Ⅱ)若從甲市這6天的樣本數(shù)據(jù)中隨機抽取兩天的數(shù)據(jù),求恰有一天空氣質量超標的概率.

查看答案和解析>>

同步練習冊答案