【題目】某調(diào)查機(jī)構(gòu)對(duì)全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的

C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

【答案】D

【解析】

根據(jù)兩個(gè)圖形的數(shù)據(jù)進(jìn)行觀察比較,即可判斷各選項(xiàng)的真假.

A中,由整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖得到互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占56%,所以是正確的;

B中,由整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖得到:,互聯(lián)網(wǎng)行業(yè)從業(yè)技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的,所以是正確的;

C中,由整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分別條形圖得到:,互聯(lián)網(wǎng)行業(yè)從事運(yùn)營崗位的人數(shù)90后比80后多,所以是正確的;

D中,互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后所占比例為,所以不能判斷互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓系方程 (, ), 是橢圓的焦點(diǎn), 是橢圓上一點(diǎn),且.

(1)求的方程;

(2)為橢圓上任意一點(diǎn),過且與橢圓相切的直線與橢圓交于 兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,求證: 的面積為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的各棱長均相等, 底面,EF分別為棱的中點(diǎn).

1)過作平面α,使得直線BE//平面α,若平面α與直線交于點(diǎn)H,指出點(diǎn)H所在的位置,并說明理由;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,直線的參數(shù)方程為(其中t為參數(shù)),現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

(1)寫出直線l普通方程和曲線C的直角坐標(biāo)方程;

(2)過點(diǎn)且與直線平行的直線, 兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象經(jīng)過點(diǎn)(,)和(,),完成下面問題:

1)求函數(shù)的表達(dá)式;

2)在給出的平面直角坐標(biāo)系中,請(qǐng)用適當(dāng)?shù)姆椒ó嫵鲞@個(gè)函數(shù)的圖象,并寫出這個(gè)函數(shù)的一條性質(zhì);

3)已知函數(shù)的圖象如圖所示,結(jié)合你所畫出的圖象,直接寫出的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)滿足f(x)=f(﹣4﹣x),f(0)=3,若是f(x)的兩個(gè)零點(diǎn),且

(Ⅰ)求f(x)的解析式;

(Ⅱ)若x>0,求g(x)=的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了整頓道路交通秩序,某地考慮對(duì)行人闖紅燈進(jìn)行處罰.為了更好地了解市民的態(tài)度,在普通人中隨機(jī)抽取200人進(jìn)行調(diào)查,當(dāng)不處罰時(shí),有80人會(huì)闖紅燈,處罰時(shí),得到如下數(shù)據(jù):

處罰金額(單位:元)

5

10

15

20

會(huì)闖紅燈的人數(shù)

50

40

20

0

若用表中數(shù)據(jù)所得頻率代替概率.

(1)當(dāng)處罰金定為10元時(shí),行人闖紅燈的概率會(huì)比不進(jìn)行處罰降低多少?

(2)將選取的200人中會(huì)闖紅燈的市民分為兩類:類市民在罰金不超過10元時(shí)就會(huì)改正行為;類是其它市民.現(xiàn)對(duì)類與類市民按分層抽樣的方法抽取4人依次進(jìn)行深度問卷,則前兩位均為類市民的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD與正三角形BCE的邊長均為2,且平面ABCD⊥平面BCE,平面ABCD,

(I)求證:平面ABCD;

(II)求證:平面ACF⊥平面BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從標(biāo)準(zhǔn)質(zhì)量為500g的一批洗衣粉中,隨機(jī)抽查了50袋,測(cè)得的質(zhì)量數(shù)據(jù)如下(單位:g):

494 498 493 494 496 492 490 490 500 499 494 495 482 485 502

493 505 485 501 491 493 500 509 512 484 509 510 494 497 498

504 498 483 510 503 497 502 498 497 500 493 499 505 493 491

497 515 503 498 518

1)找出這組數(shù)的最值,求出極差;

2)以為第一個(gè)分組的區(qū)間,作出這組數(shù)的頻率分布表.

查看答案和解析>>

同步練習(xí)冊(cè)答案