已知橢圓E的兩個焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),點(diǎn)(1,
3
2
)在橢圓E上.求橢圓E的方程.
設(shè)橢圓E的方程為
x2
a2
+
y2
b2
=1
(a>b>0).
∵c=1,
∴a2-b2=1①,
∵點(diǎn)(1,
3
2
)在橢圓E上,
1
a2
+
9
4b2
=1
②,
由①、②得:a2=4,b2=3,
∴橢圓E的方程為:
x2
4
+
y2
3
=1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E的兩個焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),點(diǎn)(1,
32
)在橢圓E上.求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E的兩個焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),點(diǎn)(1,
32
)在橢圓E上.
(1)求橢圓E的方程
(2)若橢圓E上存在一點(diǎn) P,使∠F1PF2=30°,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•廣州二模)已知橢圓E的兩個焦點(diǎn)分別為F1(-1,0)、F2(1,0),點(diǎn)C(1,
3
2
)
在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若點(diǎn)P在橢圓E上,且滿足
PF1
PF2
=t,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆山東省高二12月月考理科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

已知橢圓E的兩個焦點(diǎn)分別為F1(-1,0), F2 (1,0), 點(diǎn)(1, )在橢圓E上.

(1)求橢圓E的方程

(2)若橢圓E上存在一點(diǎn) P, 使∠F1PF2=30°, 求△PF1F2的面積.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年陜西省臨渭區(qū)高二上學(xué)期期末數(shù)學(xué)理卷 題型:解答題

(本小題滿分10分)

已知橢圓E的兩個焦點(diǎn)分別為F1(-1,0), F2(1,0), 點(diǎn)(1, )在橢圓E上.

(1)求橢圓E的方程

(2)若橢圓E上存在一點(diǎn) P, 使∠F1PF2=30°, 求△PF1F2的面積.

 

查看答案和解析>>

同步練習(xí)冊答案