【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為(為參數(shù),).以為極點,軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)已知曲線與曲線交于兩點,且,求實數(shù)的值.
【答案】(1) ;.(2) 或.
【解析】
(1)曲線參數(shù)方程消去參數(shù),得到曲線的普通方程,根據(jù)極坐標與直角坐標的互化公式,代入即可得出曲線的直角坐標方程;
(2)設(shè)兩點所對應(yīng)參數(shù)分別為,直線的參數(shù)方程代入曲線的直角坐標方程,利用韋達定理和直線參數(shù)方程中參數(shù)的幾何意義,得,根據(jù),得,分類討論,即可求解.
(1)曲線參數(shù)方程為為參數(shù),消去參數(shù),得,
∴曲線的普通方程,
又由曲線的極坐標方程為,∴,
根據(jù)極坐標與直角坐標的互化公式,代入得,
整理得,即曲線的直角坐標方程.
(2)設(shè)兩點所對應(yīng)參數(shù)分別為,,
將代入,得,
要使與有兩個不同的交點,則,即,
由韋達定理有,根據(jù)參數(shù)的幾何意義可知,,
又由,可得,即或,
∴當時,有,符合題意.
當時,有,符合題意.
綜上所述,實數(shù)的值為或.
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)學家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱之為三角形的歐拉線.已知△ABC的頂點A(2,0),B(0,4),且AC=BC,則△ABC的歐拉線的方程為( )
A.x+2y+3=0B.2x+y+3=0C.x﹣2y+3=0D.2x﹣y+3=0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,是上一點,且.
(1)求的方程;
(2)過點的直線與拋物線相交于兩點,分別過點兩點作拋物線的切線,兩條切線相交于點,點關(guān)于直線的對稱點,判斷四邊形是否存在外接圓,如果存在,求出外接圓面積的最小值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是橢圓的左、右頂點,為橢圓的左、右焦點,點為橢圓上一點(點在第一象限),線段與圓相切于點,且點為線段的中點.
(1)求線段的長;
(2)求橢圓的離心率;
(3)設(shè)直線交橢圓于兩點(其中點在第一象限),過點作的平行線交橢圓于點,交于點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為(為參數(shù),).以為極點,軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)已知曲線與曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修:坐標系與參數(shù)方程選講.
在平面直角坐標系中,曲線(為參數(shù),實數(shù)),曲線
(為參數(shù),實數(shù)). 在以為極點, 軸的正半軸為極軸的極坐標系中,射線與交于兩點,與交于兩點. 當時, ;當時, .
(1)求的值; (2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的長軸長為6,離心率為.
(1)求橢圓C的標準方程;
(2)設(shè)橢圓C的左右焦點分別為,,左右頂點分別為A,B,點M,N為橢圓C上位于x軸上方的兩點,且,直線的斜率為,記直線AM,BN的斜率分別為,試證明:的值為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的焦距為,且C過點.
(1)求橢圓C的方程;
(2)設(shè)、分別是橢圓C的下頂點和上頂點,P是橢圓上異于、的任意一點,過點P作軸于M,N為線段PM的中點,直線與直線交于點D,E為線段的中點,O為坐標原點,則是否為定值,若是,請求出定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com