○●●○●○●○●西入口●○●●○●○●○●○●○●○南入口○○○●○○○○●○○○○○●北入口○○●○○○○○○○○○○●○(1)分別求該城市一天中早高峰時間段這四個主干道的入口發(fā)生擁堵的概率.(2)各人口一旦出現(xiàn)擁堵就需要交通協(xié)管員來疏通.聘請交通協(xié)管員有以下兩種方案可供選擇.方案一:四個主干道入口在早高峰時間段每天各聘請一位交通協(xié)管員.聘請每位交通協(xié)管員的日費用為(.且)元.方案二:在早高峰時間段若某主干道入口發(fā)生擁堵.交警部門則需臨時調派兩位交通協(xié)管員協(xié)助疏通交通.調派后當日需給每位交通協(xié)管員的費用為200元.以四個主干道入口聘請交通協(xié)管員的日總費用的數(shù)學期望為依據(jù).你認為在這兩個方案中應該如何選擇?請說明理由.">

【題目】某城市有東、西、南、北四個進入城區(qū)主干道的入口,在早高峰時間段,時常發(fā)生交通擁堵,交警部門記錄了11月份30天內的擁堵情況(如下表所示,其中表示擁堵,表示通暢).假設每個人口是否發(fā)生擁堵相互獨立,將各入口在這30天內擁堵的頻率代替各入口每天擁堵的概率.

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

11.10

11.11

11.12

11.13

11.14

11.15

東入口

西入口

南入口

北入口

11.16

11.17

11.18

11.19

11.20

11.21

11.22

11.23

11.24

11.25

11.26

11.27

11.28

11.29

11.30

東入口

p>

西入口

南入口

北入口

1)分別求該城市一天中早高峰時間段這四個主干道的入口發(fā)生擁堵的概率.

2)各人口一旦出現(xiàn)擁堵就需要交通協(xié)管員來疏通,聘請交通協(xié)管員有以下兩種方案可供選擇.方案一:四個主干道入口在早高峰時間段每天各聘請一位交通協(xié)管員,聘請每位交通協(xié)管員的日費用為,且)元.方案二:在早高峰時間段若某主干道入口發(fā)生擁堵,交警部門則需臨時調派兩位交通協(xié)管員協(xié)助疏通交通,調派后當日需給每位交通協(xié)管員的費用為200.以四個主干道入口聘請交通協(xié)管員的日總費用的數(shù)學期望為依據(jù),你認為在這兩個方案中應該如何選擇?請說明理由.

【答案】(1)

(2)當時,應該選擇方案一;當時,應該選擇方案二.

【解析】

1)根據(jù)所給數(shù)據(jù)利用古典概型的概率公式計算可得.

2)計算出方案二聘請交通協(xié)管員的日總費的期望值,結合方案一比較分析.

解:(1)將東、西、南、北四個主干道入口發(fā)生擁堵的情況分別記為事件,,,,

,.

(2)對于方案二,設四個主干道聘請交通協(xié)管員的日總費用為

的可能取值為0,400,800,1200,1600.

,

,

,

,

元.

對于方案一,四個主干道聘請交通協(xié)管員的日總費用為元,

時,,應該選擇方案一;

時,,應該選擇方案二.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,滿足

1)將表示為的函數(shù),并求的最小正周期;

2)已知、分別為銳角的三個內角、、對應的邊長,的最大值是,且,求周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,左、右焦點分別是,且橢圓上一動點的最遠距離為,過的直線與橢圓交于,兩點.

1)求橢圓的標準方程;

2)當為直角時,求直線的方程;

3)直線的斜率存在且不為0時,試問軸上是否存在一點使得,若存在,求出點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的三個頂點均在拋物線上,給出下列命題:

①若直線過點,則存在使拋物線的焦點恰為的重心;

②若直線過點,則存在點使為直角三角形;

③存在,使拋物線的焦點恰為的外心;

④若邊的中線軸,,則的面積為.

其中正確的序號為______________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,點上.

(1) 求橢圓的方程;

(2) 分別是橢圓的上、下焦點,過的直線與橢圓交于不同的兩點,求的內切圓的半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為a元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

上一年度未發(fā)生有責任道路交通事故

下浮10%

上兩年度未發(fā)生有責任道路交通事故

下浮

上三年度未發(fā)生有責任道路交通事故

下浮30%

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

0%

上一個年度發(fā)生兩次及兩次以上有責任不涉及死亡的道路交通事故

上浮10%

上一個年度發(fā)生有責任交通死亡事故

上浮30%

某機構為了解某一品牌普通6座以下私家車的投保情況,隨機抽取了輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規(guī)定,,記為某同學家的一輛該品牌車在第四年續(xù)保時的費用,求的分布列與數(shù)學期望;(數(shù)學期望值保留到個位數(shù)字)

2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事故車盈利10000:

①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購進100(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解居民的家庭收入情況,某社區(qū)組織工作人員從該社區(qū)的居民中隨機抽取了戶家庭進行問卷調查,經(jīng)調查發(fā)現(xiàn),這些家庭的月收人在元到元之間,根據(jù)統(tǒng)計數(shù)據(jù)作出:

1)經(jīng)統(tǒng)計發(fā)現(xiàn),該社區(qū)居民的家庭月收人(單位:百元)近似地服從正態(tài)分布,其中近似為樣本平均數(shù).落在區(qū)間的左側,則可認為該家庭屬收入較低家庭" ,社區(qū)將聯(lián)系該家庭,咨詢收入過低的原因,并采取相應措施為該家庭提供創(chuàng)收途徑.若該社區(qū)家庭月收入為元,試判斷家庭是否屬于收人較低家庭”,并說明原因;

2)將樣本的頻率視為總體的概率

①從該社區(qū)所有家庭中隨機抽取戶家庭,若這戶家庭月收人均低于元的概率不小于,的最大值;

②在①的條件下,某生活超市贊助了該社區(qū)的這次調查活動,并為這次參與調在的家庭制定了贈送購物卡的活動,贈送方式為:家庭月收入低于的獲贈兩次隨機購物卡,家庭月收入不低于的獲贈一次隨機購物卡;每次贈送的購物卡金額及對應的概率分別為:

贈送購物卡金額(單位:)

概率

家庭預期獲得的購物卡金額為多少元?(結果保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以原點為極點,以軸正半軸為極軸,建立極坐標系,直線的極坐標方程為,曲線的參數(shù)方程為:為參數(shù)),為直線上距離為的兩動點,點為曲線上的動點且不在直線上.

1)求曲線的普通方程及直線的直角坐標方程.

2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,,動點滿足直線與直線的斜率之積為,設點的軌跡為曲線.

1)求曲線的方程;

2)若過點的直線與曲線交于兩點,過點且與直線垂直的直線與相交于點,求的最小值及此時直線的方程.

查看答案和解析>>

同步練習冊答案