【題目】某條公共汽車線路收支差額與乘客量的函數(shù)關(guān)系如下圖所示(收支差額=車票收入-支出費(fèi)用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(1)不改變車票價(jià)格,減少支出費(fèi)用;建議(2)不改變支出費(fèi)用,提高車票價(jià)格.下面給出的四個(gè)圖形中,實(shí)線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則(

A.①反映建議(2),③反映建議(1B.①反映建議(1),③反映建議(2

C.②反映建議(1),④反映建議(2D.④反映建議(1),②反映建議(2

【答案】B

【解析】

根據(jù)收支差額的計(jì)算公式可得正確的判斷.

對(duì)于建議(1),因?yàn)椴桓淖冘嚻眱r(jià)格,減少支出費(fèi)用,故建議后的圖象與目前的圖象傾斜方向相同,且縱截距變大,故①反映建議(1);

對(duì)于建議(2),因?yàn)椴桓淖冎С鲑M(fèi)用,提高車票價(jià)格,故建議后的圖象比目前的圖象的傾斜角大,故③反映建議(2).

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy2=2px過點(diǎn)P(1,1).過點(diǎn)(0, )作直線l與拋物線C交于不同的兩點(diǎn)M,N,過點(diǎn)Mx軸的垂線分別與直線OP,ON交于點(diǎn)A,B,其中O為原點(diǎn).

(Ⅰ)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

(Ⅱ)求證:A為線段BM的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦點(diǎn)和上頂點(diǎn)分別為,定義:為橢圓特征三角形,如果兩個(gè)橢圓的特征三角形是相似三角形,那么稱這兩個(gè)橢圓為相似橢圓,且特征三角形的相似比即為相似橢圓的相似比,已知點(diǎn)是橢圓的一個(gè)焦點(diǎn),且上任意一點(diǎn)到它的兩焦點(diǎn)的距離之和為4

1)若橢圓與橢圓相似,且的相似比為21,求橢圓的方程.

2)已知點(diǎn)是橢圓上的任意一點(diǎn),若點(diǎn)是直線與拋物線異于原點(diǎn)的交點(diǎn),證明:點(diǎn)一定在雙曲線.

3)已知直線,與橢圓相似且短半軸長為的橢圓為,是否存在正方形,(設(shè)其面積為),使得在直線上,在曲線上?若存在,求出函數(shù)的解析式及定義域;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若實(shí)數(shù)x,y滿足x2-4xy+4y2+4x2y2=4,則當(dāng)x+2y取得最大值時(shí),的值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對(duì)祖國的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為),M為該曲線上的任意一點(diǎn).

1)當(dāng)時(shí),求M點(diǎn)的極坐標(biāo);

2)將射線OM繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)與該曲線相交于點(diǎn)N,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左、右頂點(diǎn)分別為A、B,雙曲線A、B為頂點(diǎn),焦距為,點(diǎn)P上在第一象限內(nèi)的動(dòng)點(diǎn),直線AP與橢圓相交于另一點(diǎn)Q,線段AQ的中點(diǎn)為M,記直線AP的斜率為為坐標(biāo)原點(diǎn).

(1)求雙曲線的方程;

(2)求點(diǎn)M的縱坐標(biāo)的取值范圍;

(3)是否存在定直線使得直線BP與直線OM關(guān)于直線對(duì)稱?若存在,求直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)當(dāng),討論的零點(diǎn)個(gè)數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在長方體中,,點(diǎn)上的一個(gè)動(dòng)點(diǎn),平面與棱交于點(diǎn),給出下列命題:

①四棱錐的體積為

②存在唯一的點(diǎn),使截面四邊形的周長取得最小值

③當(dāng)點(diǎn)不與,重合時(shí),在棱上均存在點(diǎn),使得平面

④存在唯一一點(diǎn),使得平面,且

其中正確的命題是_____________(填寫所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓,動(dòng)圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.

1)求曲線C的方程;

2)設(shè)不經(jīng)過點(diǎn)的直線l與曲線C相交于AB兩點(diǎn),直線QA與直線QB的斜率均存在且斜率之和為-2,證明:直線l過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案