對于數(shù)列{xn},如果存在一個正整數(shù)m,使得對任意的n(n∈N*)都有xn+m=xn成立,那么就把這樣一類數(shù)列{xn}稱作周期為m的周期數(shù)列,m的最小值稱作數(shù)列{xn}的最小正周期,以下簡稱周期.例如當(dāng)xn=2時,{xn}是周期為1的周期數(shù)列,當(dāng)yn=sin(
π
2
n)
時,{yn}的周期為4的周期數(shù)列.
(1)設(shè)數(shù)列{an}滿足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同時為0),且數(shù)列{an}是周期為3的周期數(shù)列,求常數(shù)λ的值;
(2)設(shè)數(shù)列{an}的前n項和為Sn,且4Sn=(an+1)2
①若an>0,試判斷數(shù)列{an}是否為周期數(shù)列,并說明理由;
②若anan+1<0,試判斷數(shù)列{an}是否為周期數(shù)列,并說明理由.
(3)設(shè)數(shù)列{an}滿足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,數(shù)列{bn}的前n項和Sn,試問是否存在p、q,使對任意的n∈N*都有p≤
Sn
n
≤q
成立,若存在,求出p、q的取值范圍;不存在,說明理由.
分析:(1)直接利用數(shù)列{an}是周期為3的周期數(shù)列以及an+2=λ•an+1-an可以推得(λ+1)(an+2-an+1)=0即可求常數(shù)λ的值;
(2)先利用4Sn=(an+1)2求得an-an-1=2或an=-an-1(n≥2).
①由an>0得an-an-1=2(n≥2),求出數(shù)列{an}的通項公式即可判斷數(shù)列{an}是否為周期數(shù)列;
②由anan+1<0的an=-an-1(n≥2),求出數(shù)列{an}的通項公式即可判斷數(shù)列{an}是否為周期數(shù)列;
(3)先由數(shù)列{an}滿足an+2=-an+1-an(n∈N*),推得數(shù)列{an}以及數(shù)列{bn}是周期為3的周期數(shù)列,求出數(shù)列{bn}的前3項,即可求出數(shù)列{bn}的前n項和Sn以及數(shù)列{bn}的前n項和Sn的取值范圍,即可求出對應(yīng)的p、q的取值范圍.
解答:解:由(1)數(shù)列{an}是周期為3的數(shù)列,
得an+3=an,且
an+2=λ an+1-an 
an+3an+2-an+1
?(λ+1)(an+2-an+1)=0,即λ=-1.

(2)當(dāng)n=1時,s1=a1,4s1=(a1+1)2?a1=1,
當(dāng)n≥2時,4an=4sn-4sn-1=(an+1)2-(an-1+1)2.?(an-1)2=(an-1+1)2,即an-an-1=2或an=-an-1(n≥2).
①由an>0有an-an-1=2(n≥2),則{an}為等差數(shù)列,即an=2n-1,
由于對任意的n都有an+m≠an,所以數(shù)列{an}不是周期數(shù)列.
②由anan+1<0有an=-an-1(n≥2),數(shù)列{an}為等比數(shù)列,即an=(-1)n-1
即an+2=an對任意n都成立.
即當(dāng)anan+1<0時是{an}周期為2的周期數(shù)列.

(3)假設(shè)存在p,q.滿足題設(shè).
于是
an+2=-an+1-an
an+3=-an+2-an+1
?an+3=an,又bn=an+1則bn+3=bn,
所以{bn}是周期為3的周期數(shù)列,所以{bn}的前3項分別為2,3,-2.
則sn=
n       n=3k
n+1     n=3k-2
n+3     n=3k-1

當(dāng)n=3k時,
sn
n
=1;
當(dāng)n=3k-2時,
sn
n
=1+
1
n
?1<
sn
n
≤2;
當(dāng)n=3k-1時,
sn
n
=1+
3
n
?1<
sn
n
5
2

綜上1≤
sn
n
5
2
,
為使p
sn
n
≤q恒成立,只要p≤1,q
5
2
即可.
綜上,存在p≤1,q
5
2
滿足題設(shè).
點評:本題是在新定義下對數(shù)列知識的綜合考查,屬于數(shù)列中的難題.一般數(shù)列出大題,要么是非常容易,在第一第二大題;要么就是很難的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)若一個數(shù)列各項取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項都是正數(shù)的數(shù)列{xn},滿足xnan=xn+1an+1=xn+2an+2(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數(shù)表,當(dāng)x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:
n
2
-
1
3
x1-1
x2-1
+
x2-1
x3-1
+…+
xn-1
xn+1-1
n
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

12、在數(shù)列{an}中,若存在非零整數(shù)T,使得am+T=am對于任意的正整數(shù)m均成立,那么稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.若數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N),如x1=1,x2=a(a∈R,a≠0),當(dāng)數(shù)列{xn}的周期最小時,該數(shù)列的前2010項的和是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)P0是拋物線y=x2上一點,且在第一象限.過點P0作拋物線的切線,交x軸于Q1點,過Q1點作x軸的垂線,交拋物線于P1點,此時就稱P0確定了P1.依此類推,可由P1確定P2,….記Pn(xn,yn),n=0,1,2,….給出下列三個結(jié)論:
①xn>0;
②數(shù)列{xn}為單調(diào)遞減數(shù)列;
③對于?n∈N,?x0>1,使得y0+y1+y2+…+yn<2.
其中所有正確結(jié)論的序號為
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市西城區(qū)(北區(qū))高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

如圖,設(shè)P是拋物線y=x2上一點,且在第一象限.過點P作拋物線的切線,交x軸于Q1點,過Q1點作x軸的垂線,交拋物線于P1點,此時就稱P確定了P1.依此類推,可由P1確定P2,….記Pn(xn,yn),n=0,1,2,….給出下列三個結(jié)論:
①xn>0;
②數(shù)列{xn}為單調(diào)遞減數(shù)列;
③對于?n∈N,?x>1,使得y+y1+y2+…+yn<2.
其中所有正確結(jié)論的序號為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省郴州市安仁一中高三(上)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

在數(shù)列{an}中,若存在非零整數(shù)T,使得am+T=am對于任意的正整數(shù)m均成立,那么稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.若數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N),如x1=1,x2=a(a∈R,a≠0),當(dāng)數(shù)列{xn}的周期最小時,該數(shù)列的前2010項的和是( )
A.669
B.670
C.1339
D.1340

查看答案和解析>>

同步練習(xí)冊答案