【題目】如圖,長途車站P與地鐵站O的距離為千米,從地鐵站O出發(fā)有兩條道路l1,l2,經測量,l1,l2的夾角為45°,OPl1的夾角滿足tan(其中0<θ<),現(xiàn)要經過P修條直路分別與道路l1l2交匯于A,B兩點,并在A,B處設立公共自行車停放點.

1)已知修建道路PA,PB的單位造價分別為2m/千米和m/千米,若兩段道路的總造價相等,求此時點A,B之間的距離;

2)考慮環(huán)境因素,需要對OA,OB段道路進行翻修,OA,OB段的翻修單價分別為n/千米和n/千米,要使兩段道路的翻修總價最少,試確定A,B點的位置.

【答案】12)要使OAOB段道路的翻修總價最少,A位于距O3千米處,B位于距點千米處.

【解析】

1)以O為原點,直線OAx軸建立平面直角坐標系,得到的方程,進而求得點P的坐標,

法一:由題意得,求得B點的縱坐標為3,進而得到點的坐標,即可得到答案。

法二:由題意得2mPAmPB,求得,根據(jù)向量相等,求得點的坐標,即可求解。

2)法一:由題意,得到造價的表達式,設,得到要使S最小,只要y最小,分類討論,即可求解。

法二:作OBM,交y軸于點Q,作OAN,求得OQ1,進而得到總造價,設,要使S最小,只要y最小,即可求解。

O為原點,直線OAx軸建立平面直角坐標系,

因為,所以,

P2t,t,OP=,得t=1,所以P2,1

法一:由題意得,所以BP=2PA,所以B點的縱坐標為3

有因為點B在直線上,所以B3,3

所以.

法二:由題意得2mPA=mPB,所以.

Aa0)(a0),又點B在射線yxx0)上,所以可設Bb,b)(b0),

,得所以

所以.

答:A,B之間的距離為千米.

2)法一:設總造價為S.則

,要使S最小,只要y最小

軸時,A(2,0),這時OA=2,,

所以.

ABx軸不垂直時,設直線AB方程為,

令y=0,得點A的橫坐標為,所以,

xy,得點B的橫坐標為,

因為,所以k<0或k>1,

此時,

,

k0時,y上遞減,在(-1,0)上遞增,

所以,此時;

k1時,

綜上所述,要使OA,OB段道路的翻修總價最少,A位于距O點3千米處,B位于距點千米處.

法二:如圖,作交OB于M,交y軸于點Q

交OA于N,困為P(2,1),所以OQ=1

又因為∠BOQ=45°,所以,

所以,

,得,

所以,

設總造價為S,則,

,要使S最小,只要y最小.

當且僅當時取等號,此時.

答:要使OA,OB段道路的翻修總價最少,位于距O點3千米處,B位于距O點千米處.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)求直線與曲線公共點的極坐標;

(2)設過點的直線交曲線,兩點,且的中點為,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,“嫦娥一號”探月衛(wèi)星沿地月轉移軌道飛向月球,在月球附近一點變軌進入以月球球心為一個焦點的橢圓軌道Ⅰ繞月飛行,之后衛(wèi)星在點第二次變軌進入仍然以為一個焦點的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在點第三次變軌進入以為圓心的圓形軌道Ⅲ繞月飛行,若用分別表示橢圓軌道Ⅰ和Ⅱ的焦距,用分別表示橢圓軌道Ⅰ和Ⅱ的長軸的長,給出下列式子:

;②;③;④.

其中正確式子的序號是( )

A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),則以下結論正確的是(

A.函數(shù)的單調減區(qū)間是

B.函數(shù)有且只有1個零點

C.存在正實數(shù),使得成立

D.對任意兩個正實數(shù),,且,若

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某種螺帽是由一個半徑為2的半球體挖去一個正三棱錐構成的幾何體,該正三棱錐的底面三角形內接于半球底面大圓,頂點在半球面上,則被挖去的正三棱錐體積為_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年,國家逐步推行全新的高考制度.新高考不再分文理科.山東省采用3+3模式,其中語文、數(shù)學、外語三科為必考科目,每門科目滿分均為150分.另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物6門科目中自選3門參加考試(63),每門科目滿分均為100分.為了應對新高考,某高中從高一年級1100名學生(其中男生600人,女生500人)中,采用分層抽樣的方法從中抽取n名學生進行調查,其中女生抽取50人.

1)求n的值;

2)學校計劃在高一上學期開設選修中的物理地理兩個科目,為了了解學生對這兩個科目的選課情況,對抽取到的n名學生進行問卷調查(假定每名學生在物理地理這兩個科目中必須選擇一個科目且只能選擇一個科目).下表是根據(jù)調查結果得到的一個不完整的2×2列聯(lián)表,請將下面的2×2列聯(lián)表補充完整,并判斷是否有99%的把握認為選擇科目與性別有關?說明你的理由;

選擇物理

選擇地理

總計

男生

10

女生

30

合計

3)按(2)中選物理的男生女生的比例進行分層抽樣,從選物理的學生中抽出8名學生,再從這8名學生中抽取3人組成物理興趣小組,設這3人中女生的人數(shù)為X,求X的概率分布列及數(shù)學期望.

005

001

0005

0001

3841

6635

7879

10828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年春節(jié)前后,一場突如其來的新冠肺炎疫情在全國蔓延.疫情就是命令,防控就是責任.在黨中央的堅強領導和統(tǒng)一指揮下,全國人民眾志成城、團結一心,掀起了一場堅決打贏疫情防控阻擊戰(zhàn)的人民戰(zhàn)爭.下圖表展示了214日至29日全國新冠肺炎疫情變化情況,根據(jù)該折線圖,下列結論正確的是(

A.16天中每日新增確診病例數(shù)量呈下降趨勢且19日的降幅最大

B.16天中每日新增確診病例的中位數(shù)小于新增疑似病例的中位數(shù)

C.16天中新增確診、新增疑似、新增治愈病例的極差均大于2000

D.19日至29日每日新增治愈病例數(shù)量均大于新增確診與新增疑似病例之和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預測如下:

甲說:作品獲得一等獎”; 乙說:作品獲得一等獎”;

丙說:兩件作品未獲得一等獎”; 丁說:作品獲得一等獎”.

評獎揭曉后,發(fā)現(xiàn)這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】心理學家發(fā)現(xiàn)視覺和空間能力與性別有關,某數(shù)學興趣小組為了驗證這個結論,從興趣小組中按分層抽樣的方法抽取50名同學,給所有同學幾何和代數(shù)各一題,讓各位同學自由選擇一道題進行解答,統(tǒng)計情況如下表:(單位:人)

幾何題

代數(shù)題

總計

男 同學

22

8

30

女同學

8

12

20

總計

30

20

50

(1)能否據(jù)此判斷有97.5%的把握認為視覺和空間能力與性別有關?

(2)現(xiàn)從選擇幾何題的8名女生中任意抽取兩人對他們的答題進行研究,記甲、乙兩名女生被抽到的人數(shù)為的分布列及數(shù)學期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案