【題目】設(shè)a,b均大于0,且 + =1.求證:對于每個n∈N* , 都有(a+b)n﹣(an+bn)≥22n﹣2n+1 .
【答案】證明:由a,b均大于0,且 + =1,
可得 知 ,
由二項式定理,得
= .
則原不等式成立.
【解析】運(yùn)用二元均值不等式可得 ≥2,再由二項式定理,化簡整理可得(a+b)n﹣(an+bn)
= ,再由均值不等式即可得證.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解不等式的證明的相關(guān)知識,掌握不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學(xué)歸納法等,以及對平均值不等式的理解,了解平均不等式:,(當(dāng)且僅當(dāng)時取號即調(diào)和平均幾何平均算術(shù)平均平方平均)
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1與A1C相交于點(diǎn)D.
(1)求證:BD⊥A1C;
(2)若E在棱BC1上,且滿足DE∥面ABC,求三棱錐E﹣ACC1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次體育興趣小組的聚會中,要安排人的座位,使他們在如圖所示的個椅子中就坐,且相鄰座位(如與, 與)上的人要有共同的體育興趣愛好.現(xiàn)已知這人的體育興趣愛好如下表所示,且小林坐在號位置上,則號位置上坐的是( )
小林 | 小方 | 小馬 | 小張 | 小李 | 小周 | |
體育興趣愛好 | 籃球,網(wǎng)球,羽毛球 | 足球,排球,跆拳道 | 籃球,棒球,乒乓球 | 擊劍,網(wǎng)球,足球 | 棒球,排球,羽毛球 | 跆拳道,擊劍,自行車 |
A. 小方 B. 小張 C. 小周 D. 小馬
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 :
(1)證明f(x)是R上的增函數(shù);
(2)是否存在實數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在,請求出a的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C,D為空間四點(diǎn).在△ABC中,AB=2,AC=BC= .等邊三角形ADB以AB為軸運(yùn)動.
(1)當(dāng)平面ADB⊥平面ABC時,求CD;
(2)當(dāng)△ADB轉(zhuǎn)動時,是否總有AB⊥CD?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二面角α﹣MN﹣β的大小為60°,菱形ABCD在面β內(nèi),A、B兩點(diǎn)在棱MN上,∠BAD=60°,E是AB的中點(diǎn),DO⊥面α,垂足為O.
(1)證明:AB⊥平面ODE;
(2)求異面直線BC與OD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z滿足|z|= ,z2的虛部為2.
(1)求z;
(2)設(shè)z,z2 , z﹣z2在復(fù)平面對應(yīng)的點(diǎn)分別為A,B,C,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海中一小島的周圍 內(nèi)有暗礁,海輪由西向東航行至處測得小島位于北偏東,航行8后,于處測得小島在北偏東(如圖所示).
(1)如果這艘海輪不改變航向,有沒有觸礁的危險?請說明理由.
(2)如果有觸礁的危險,這艘海輪在處改變航向為東偏南()方向航行,求的最小值.
附:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com